Today we're going to start talking about binary relations. The canonical
example is equivalence, e.g. given

(ﬂpllnt%lf\{ + g) (Aaiint. %)
= (Axbool, B) true

It should be pretty easy to see that these programs are "equal” in some
case. Our goal is to build a more powerful framework for proving these
kinds of equivalences.

What is equivalence? Well, the standard definition is called "contextual
equivalence" (or "observational equivalence"), which says that for all
possible program contexts, when you put some expressio’an it, it will

u n \S (X3
behave" the same way as the other context. e \ow

Contextual eguivalence * '~ e, N e, . 7=VC: (M=)~ (- - bo))

3 pleg(zm Shovld not
9 awF:vVS /

We should first say a little bit about what we mean by "context". In the
simply typed lambda calculus, we can think of contexts as expressions
with holes in them.

What type do you need here?
= [] | ufc C then €, else ez You only need a base type

else inhabited by TWO elements; this
’ it e then C ¢, is enough! And because we're

™ hale * l E'F e then e else C quantifying over all contexts,
nothing is lost! (But unit doesn't work)
l ;\90 C this makes general contexts different from
I C e evaluation contexts, since we never

evaluate under the lambda

[e C

| want to say the context is a big bubble with a hole in it, and when | stick
el or e2 in the hole, | should get the same thing out.

C

[e,]

ol GL

However, we don't want to just talk about untyped contexts; we want
our contexts to be "well-typed".

C: (M) ~ (M)

/
~) .
— S — +Cled
type of the hole type of B Cesvitiag
Flled \n conlext

Mo

The typing rules for contexts are fairly simple, but we'll do a few to get
the feeling:
ouf SLTC aW\ows weakenla
_ . _ | / So we build & AT the (e
this was incorrect in lecture -> r C ["

FIT: (FFm) aa (T e)

Q/do?ﬂf'l{: vlll be Be seme tye

Q: Don't you not want to allow wanting weakening here? Because whenever
you calculate the term, you could do it after the fact.

A: For our construction of contextual equivalence, omitting weakening here
can cause problems for us. [someone in the audience explained but

| missed the explanation]

lese 21e 4le Hadlt\oaz | retwiatypes

—
FC (M, o) e (T T =72

Fax:m,. ¢ (MameT) m (F=T—T,)

Q: What about multiple holes? /L hohce tle lole Could €

A: There is a theorem that lets you just Luled 2IL1fH2/ll~/ Jxeoh so Wt
generalize this to multiple holes. Saying ignee L (T

one hole keeps things simpler.

Aside: In ATTAPL, Andrew Pitts defines Point of confusion: the judgment we
contextual equivalence as a greatest are using to indicate in holes is
congruence relation. It deals with a language reminiscent of the typing rules from
with polymorphism and existential types, type theory (e.qg. t2 is a type under
but only allows recursive types and doesn't some context). So it looks like there
use step-indexed LRs (it predates it); he uses is a dependence, but this is false:

Galois connections to show recursive functions we're implicitly referring to the
satisfies admissibility conditions. At the end of expression we're going to fill the hole
the chapter, he says, it can handle recursive with.

problems, but open problem: how do we scale

it up for recursive types? Well, we have that

machinery!

Q: But what about termination?

A: Well, at the moment, we're in STLC, so everythign terminates. Note that

we cannot pick a function as our base type, because it's not at all clear to say

they are equal. Note that you can always build a bigger context which will

distinguish them, but eventually, you want to stop somewhere where equality

is purely syntactic. Notice that it is not all clear how you would go about

proving their equivalent in ALL contexts (the only thing you could possibly

try is induction on C, and the lambda rule will get you stuck): that's why

we're using logical relations! (But another popular method is bisimulations.)
It's well worth noting that bisimulation is a form of coinduction;
(co)induction really is what makes the world go around!

Interesting fact: when nontermination is admitted in the language, you don't
really care about the return type: the only thing you care about is whether or
not they coterminate or not!

Contextual eguvalence for non-normelizng languages
I

= e R’,C&QZ : t','.—:vfl", YC- (F’\- ‘T)"’?(' \'-{T")

—_—
Jusk check teiminglion

But we are not going to use this definition today...

Q: What if | have other effects?

A: It still works!

Q: I don't believe you. For example, compare a program which prints and
then runs forever, and a program which just runs forever?

A: Well, you need some sort of construct which could see what was printed...
in the example of references, you can always read out the reference to see
what was printed.

A brief application: imagine that you are implementing an abstract data structure,
e.g. a stack. You have an existential data type, so the internals are hidden, but
you would like to show your two implementations are behaviourally equivalent.

— a “suspended” compuiztiva
S Z&’\-,Q(V\ ‘____ (FQ eu\w/halp\n\‘ac £uactivn)

T:i:= booel |’T‘-—%‘TZ | o | Ve \ TJoc.
ei= .. | Nx.e | elr] | pack<m’e? as FaT

| unPack A, X=€, n €, ’t/l?gihvf\z\ 4{\%;50'\9
Vs Acx.e, l ‘oack 4, v) as Ja.q

Ei= o | E[T] | packiT, E7 as Fm.v | vnpsck x,=E ine

(A%) Tr] ¥ e[7/x]
Unpatk &, = (,oack <rr,v>) ne 3[”/0(] [\7”]

Ay e ACER VAN Tz |15 %M
AT ein AjTreiYar AT
N - \xe: V.1 AT e [T[T/]
) not centin &
ASCHe v ["x] ard dots 00 ©

f preve My « f{o”\
AT packdye) a8 FaTi =T lgeking o1Side

D>Tre: Aa A5, 0T e, T A-m,
O, T - upack s =€, 0 €0 T,

Many presentations of System F omit existential types, because they are not

strictly necessary; they are included here because they are very interesting
rule in the logical relation.

There are a lot of cool things you can do with polymorphism and existential types.
For example, Wadler conceived of the notion of a "free theorem". Here is an example:

‘e Vo> A T A FviT
S el] v s v

i.e. the implementation of e must be A‘X. %70:0(. X

Why is this true? Well, it has to do with the power of the type. e has stated
in its type that it is willing to accept any type (even if it was empty). This is
such a powerful restriction on its behavior that it fully specifies its type.
Note that if you have nontermination, you have to weaken this a little:

S eld] v v oRr e[ﬂxf’ﬁ‘

It's interesting to see how you could actually prove this theorem with logical
relations, though we will probably not get to it today.

Here is an example of using an existential type.
T = Fx, « # (x— boo\)
e = pack<'m't, (H, AR x"—,’fl 0)>
e, = pack {yool, (trves A% sool. not ®)7

These expressions look different, but amazingly they are equivalent! Alpha is intended
to be an opaque blob, and when we use the function wrapped up the existential,

the only thing we can ever use it with is the other value passed with it. So both

of these functions always return false.

Q: So you have no decidable equality between types?

A: Yes, | do not have intensional type analysis in this language.

Q: What if | type el, and put forth in some variable x, and then use it in some

other term? | can discriminate values in that case?

A: The unpack rule will save you. You can't take that for and give it out to the world.

Time for some logical relations. Recall last time we had:
V’Ibool:n = %V \ vadte V V=+}\sa_i

EUm =5 |3

Now we want to construct binary relations instead of unary relations, and
we want our relations to capture what it means for values to be observationally
equivalent.

a little bit of formalism here,

A‘l:om[ﬂ'] =§(e.,ez) | ‘e T Acte, ’T} because | want to make sure my
terms have the right type (and
because this will become nontrivial
later)

\/[[loool]] = %6’\9V1)GA’&0M[!)00\] \ VsV, =t v/ VizVyT ""?2\36% obvious!
VIT—»m]= i(?\'x:’r..e. ,AniT,.e,) € Atom[-,)
| V(vve) € VIm D, (@.1%],e. %)) e €)%

Q‘S_‘T] = %(@uez) GA’twv\{’Y] \ v, v, . €, 5 v, A\ e2|i7~¢v2 /\(V,,\/z)e\/llfrﬂ%

Mernztely 7Vw. 629V, 2 T Y% Al e VT T3

note that this symmetric relation only works because
our language is terminating; when we have a
nonterminating language we are more likely

will be an explicit number of t(])c usehthe asymr_netrllf "relatlon. InI fact, we WI||.)
steps, since we will be using often have a notion of "contextual approximation

step-indexing. r}—2| éc*‘-?‘ez '.’To__‘:f VC

=cle]| = Cle]y

Additional caveat: When you
are non-terminating, this star

. p dof
(e, x%e, i T = t
Mg 6%, A Me, ¢™¢,

This makes things easier, because we cut our
work in half, and then can often say "without loss of
generality" for the other direction.

We now consider polymorphic types, which are inhabited by type
lambdas. We might attempt to approach these by analogy to lambdas,
where we applied them to related values. What are "related types"? Well,
we might think that it doesn't matter, after all, the type has no bearing
on the eventual "result" of the type-lambda. Consider this example:

EAu'—i’f"i S)> %?Zl‘% tue 25 (Bxame 1)

Most people would reasonably expect our logical relations to be able to say
these two programs are equivalent. So we'll have to allow the TYPES that
we apply the type lambdas to be different. Let's give it a try:

\/HVO&.‘T:U = %(,A.‘X\Q\ ’j\o(, ez) S A’tOM[Vo\ .'T—]
Ateogt: 1V Tume (@, %)) € ELTD S
) TL] f

Unfortunately, we now have a problem. How are we supposed to relate our two
expressions? The type application caused the expressions to get their

concrete types substituted in for their type variables, but for our choice of

the expression relation, we still have a type variable alpha free in tau, and no indication
whether or not we should pick t1 or t2. What we would like is to defer the choice, and
GENERALIZE our relation to work over OPEN types.

We'll generalize our type relation by introducing a type environment rho which we can
use to keep track of the assignments to type variables. This will not be a simple map:
we'll need to track both the assignments for the left hand side, AND the

right hand side. For convenience, we'll introduce some notation:

o maps » type varleble to types (and o celotlon)

To refer to a specific type (e.g. the mapping Q__. io(l-b('T,,‘T'z,R) ...}
from type variables to the Ihs type, we'll ?

have syntax for projections which give you @, = {o(=T, , ...’g

the map for a specific index, as shown here: SN
0, = §XT, | 3}
We will juxtapose rho with a type to apply
it as a substitution. So, for example: 9& = io& R, 3
dof ignore the green R for now,

Q| (0(- 00) = M, -—7’T, it will be motivated later...

Just as was the case with step indexing, we'll need to thread rho through

all of our definitions. For the four definitions we already created, we expect
things to be straightforward: this is almost true. The most nontrivial change

will be for atom. Remember that atom is generating a set of pairs of expressions
which are of "type tau". Tau may have free type variables, which are going

to need to be instantiated differently on the Ihs and rhs. We're going to define
Atom by way of an intermediate step, which will help us later.

A‘tom[ﬂ', ’Ty_] =€(€|,€z) ‘ -+ ¢ TN }-QZ:(TZ} As you might expect,
) deb el and e2 may not have
A{OM ['T] o= A‘EOM [e‘(‘r' 5 & q-?J the same type! They will
only be "related."
Warning: In lecture the second definition was defined directly as:

Atom [7] @ = §(21,02)] €, : 0T A -F€y2 0TS

The bool case is trivial.

Vool] o = $61,w)e Atomlbool] 0

\\/,:\Izct{ve V V =Vi< ﬁlseg

The function case proceeds as before, but we have to be a little careful when
we state the structure of the elements we extract out of atom: the types of

the binders are not t1 and t2, but rhol(tl) and rho2(t2) (remember substitutions
affect the types of binders too.)

VIT-m] o= $(Ax:pm).e., Amiofm)e,) eAtom[T,] 0
l V(V\)Vll) c \/H.‘TI:U@ .
(1%, e L) eEf Yo §
&“_rf] o= %(&;C’—z) eA’tOM{’T] ©

X
\ a\/.,Vz. G2V A ezf*ﬁVz A(V,,vz)eVllWIl © %

Finally, we can return to the case that gave us so much trouble. Instead of performing
a substitution on tau right away, we simply add the two choices to our context:

VIve. 7] e = {(Axie, Axee,)

vV, 1,.

L], e, [7]) ¢ Elr] el] §

Of course, we will need to use the context somewhere, and this use
will come when we use the type variable that the type lambda bound.
We should now think about how we're actually going to define this relation.

When are two values related at the type alpha? Remember the opaque blobs
had type alpha!

VIaTe = o) e Atoml«] o | 2223

Just as we got to pick two types to apply the type lambdas to (displayed in a blue
box), we should also be able to pick a relation that specifies when values of
these two types tl and t2 should be related to each other. So we augment our
context rho with yet another component,|R : Rel[tl, t2]] The final, true

relation on type lambdas is thus: (well, not really augment; it was there already ;-)

\;\-y\oms yi/icted 4o velues

Re\ [‘T, ;(TZ-] {K eP(AtON\ [)'g Rel[tl, t2] relates a value of type t1

L_power set and a value of type t2.

VIVa. 7] o = $(Axie, Axe,) e Abom[Va 7)o
| V'T.,frz. VReRel[r,).
(&[], e [/]) & E L] el 11,m, 82

,‘/ﬂd]] e = %(V\)\/z)eA‘tOM[o(] 0 |(V.:Vz‘) @:QR(OO}

In the case of a type lambda, the choice of relation is universally quantified:
thus, we only relate type lambdas who are equivalent under ANY choice of
relation.

You might think that there would be some trouble if you had a type

(forall a. a), since the relation might be empty. But this type is uninhabited,
whereas in the case of (forall a. \x:a. x), the condition on their equivalence
is vacuously fulfilled!

Finally, we can consider the rule for existential types. Like their universal counterparts,
we will need to specify a relation. However, this relation is existentially quantified
(instead of universally quantified)

vV [[30\."[]] o= %(Packé‘r,,v,), yack(%,vz)) GAtom[_'—j‘oc.fr} e
| 3ReRel[T,,7,].
7 e V[T ele e (T,)]

adding existential quantifiers
here for t1 and t2 is unnecessary

Here, the user can give us a specific relation for which he wants the equivalence
to hold; in the case of example of existential types, it may include (4, true). We
will give more intuition for the function R is playing next lecture.

