LAST TIME Io\en'tity Paths
('l"n‘ ‘fe—NA(Q)!asAQ
P SY(V\(P). b=A8 £ P'-a:A\o
P €003 (p,q)1875C U 5iamab an bz, C

We srgued that dhls ype bad Qoupo\d SHugdu/e
e = (efl

F-P" Yo ye 2l eq‘,z‘l\onj) S0 now
f@—F(-pE p = p-!er(-‘l we hove WE %
p-(qc) = (pg)r b

\

{Q-ﬂ = PFI-P

“h\,LU Uﬂﬁ"f‘y 4\//2 (]
a AN 3 ﬂ/ A
v

thls sdtcdvre ondinuts o 'm'F\AH\/

In category theory, there is a demand that these equalities hold "on the nose";
if we have this composition and that composition, we demand they be identical
in the 1-category sense. This is where "weak" and "strong" comes from;

equality comes from identifications, so the natural world treats them weakly,
i.e. up to homotopy.

snoher w2y ol S2ylag
Py s 4o JWT Move e

e vl [to
FU(\(‘,&\O(\)“*\{ —> FU’\CA'OIB“-|7 \/ pid AL q 0

tle conclyfoNn

Use elimination rule for identity type (J), which was developed on the basis
of thinking of identity as an inductively defined type. Formally:

')C'.A,\/’.A,z'. X=pY P(?O:‘/)%)'-u \) Motlve

Pia=p b Z) Pl quos'ﬁa(‘
. . 3 "
. — mih-pm): P ((W)Wafe“)\o()) nduedul p"/oTs
\elent J. (2.p59)i18,b,p H)ew madtive s valld fu g
1o 5\(’_\:;"" fvc %5),t.P
J_(?O.p‘, tefly(3)) = [Q/W]P PATA 1v0UCTION

We'll often say "Theorem, X (motive), and proof is by path induction
on some path. We then (1) choose a motive and (2) do reflexivity.
Ultimately we're writing a functional program that uses J. However we
can still state it in "informal mathematics."

This is a notion of FUNCTORIALITY.

F\)r\c’\'\d‘\?/\\'w — evely{LV\ fespec:\s e’ Qq\,]\/gle(\ce_
) 32b mplles £a)z £(L) 8 for oy fiA28

Functions cannot distinguish between definitionally equal things.
This makes sense, since we do not want f(2 + 2) !'= f(1 + 3)

e azb \nplles F)=FO)Y For oy FiAU

Notice that this is just a restatement of the first statement, just
with B = U.

But unfortunately, definitional equality doesn't give us as much as we want,

for example, x + 0 and 0 + x are not definitionally equal, so these principles
don't apply.

So functoriality needs to express that things respect HOMOTOPY.

Hj(\do(a\\i\/ — e"el)'fl"l\'\j (esyecdsl l’\OI“'oﬁOﬁA
e9) 8=pb% \mples £G) =g T

This is a beefier statement than functionality; it tells us something
about proofs. IF we have a proof a = b, then we have a proof
f(a) = f(b).

2y) e f’.‘ a =A‘o dan
ap T b £(8)=g £V

“pail epplleation”
“Redlon on paint”
The term functor comes from category, where maps on categories must

map both objects as well as morphisms, while preserving various coherence
properties. The situation is analogous here:

o) 'F(Q) D ~cel\ W\\ca'\lm QPO _F 3
- c’;—\-e_';dj PNt
/H,eevf‘[_F(l FD 1 -cell Qppllg_g—l\o,\ 3‘;1 _P a

(o S\mmply 59)

But we can keep going on here, the analogy in CT being infinity-category
theory, where all of the higher morphisms transfer too.

To sum up, a function is ALSO a functor which will transform paths.

L1g can Le
Co!\rﬁ/g\nﬁ wlen
You have P ~dr

as\den Unyt Inyefvel

T
¢ieﬂ_1

Thus, | -> A allows you to PICK OUT a path from the space A. We know,
in fact, that | -> A is equivalent to the total path space of A.

ASIDE: in homotopy theory, the interval would actually contain all of the

real numbers. This kind of homotopy is called analytic, because it is built

up from real numbers. We are taking a more functional programming approach;
the analytic approach can be thought of as the "assembly language" of
homotopy theory; we're manually doing the "memory management" of
handling the real numbers. What | really care about is that | have reflexivity,
that | have transitivity, etc. This is called the SYNTHETIC approach, we are doing
synthetic homotopy theory. What's interesting is that we can do a lot of
elementary (but nontrivial) homotopy theory, while never mentioning real
numbers, or topological spaces, etc. It's all intrinsic in the type theory.

Type theory captures an INTRINSIC view; we've abstracted away from instances
of homotopy theory not limited to topological spaces, but other structures.
Paths show up everywhere, and type theory is the abstract theory of that.

It's good computer science, since identifying an abstract type, and identifying
an induction principle; and as it turns out, mathematicians never noticed this.

| like this method, because it is very natural from CS view.

Q/A: Think that the function from 1 -> A (where 1 is the discrete set of one
point), this identifies a point in A. So we've generalized this to work with
a path.

H){\do(\a\ﬂ\/ v o THEOREM,

The reason path induction is valid, is everything that we can write

down satisfies this requirement. Every function can be interpreted

into functions on topological spaces, and there is no way to write a
discontinous function. Intuitively, in freshman calculus, how was the example
always defined? Well, you say a function is zero until one, and then it
jumps up. There's a case analysis there. Well, from an FP perspective,

how do you do that? There's no way to tell if a real number is greater than
or equal to zero. So the idea is that to do something discontinous, you need
to decide something (trichotomy); but this is precisely what constructive
mathematics denies. Everything | write down is constructive math, so it

will respect paths.

This is great: constructivity is motivated by computability. But it also is essential
to dealing with mathematics of a very abstract nature, which has nothing

to do with computability. Constructivity is at the core. Set theory has baked

in too many wrong assumptions, you're at a dead end. Type theory lets us
define these structures. exys P@a,b)

¢
Theoenn, Tf fiA—>8 and pras,b | kun aF?a:m
Plod{" 8\/ Py“a'\no\\/cfflr/l\ on r)

Dmetlves W-A,y'./.\ b £ () =B‘r(y)3u
2) STS, 703A}‘(70) =8 ‘F(?O) Q: Why is f(x) = f(y) : U?

A: Well, closure properties of

d - ap F Pl -F(a)zg.('([,)) universes always allows us to

Aejefoce 7 form this type.

notey \ndudWi
potteals s #e

iy g |

Q: Why doesn't p show up in
bytle ey, v the motive?
ep ’P fe'FIA(Q) = fePIGCF(a)) A: It could, but our conclusion
. doesn't say anything about the
Ne do Js czlevlofen rile, path itself. Our proof will, however!

Path in space A can be transformed to path in space B, where the null
path in A will turn into the null path in B. If you don't say this, for all we know,
we could take self-loops in A into a loop which is not refl.

This is a simple example of proof relevant mathematics. We are thinking of them as
operations on proof data structures.

Q: Why do we care that refl maps to refl? Is it functoriality?

A: Yes, essentially. You can in fact prove that ap acts functoriality in p,
so it will preserve composition and inverses, and this proof requires that
calculation rule. These proofs will be done by path induction, in which
case I'll have reflexivity. And so | need to see that transporting these
reflexivities will work.

Exgce ' o éy)fF ‘0“‘ = (faw f p)'_'
W’F(P‘%) ol)P,F F- QP’F C#
net F>0 s)
N W 8= 32 ,f‘ L, =g b, tlen (2,57 “axg $825b,7
P % o5p (3p pair p) 4
,C.culllw

2) tecall’ e queshen wes mlc\l}:

A 8 Shour o1y A"B

i a.qul

> Procy Exlercisfe: exhibit the cell given
—A —— this axiom.

Ao < =axp <Fst(e), snd(0))

Paolo: This "axiom" can 7 U(\\erS?J\ coaitlen dor xofa Juch
actually be provable.

But see below.

not defindlenz|! ¢ codd be Sume valarowa oo cosS.

In the HOTT book, products are defined one way, so this is an axiom, but then
there is another theorem (pattern matching) which now must be an axiom.
In the HOTT book, products are treated positively, but | want to treat it negatively.

I am explaining the consequences of path induction, in the sense that everything
respects paths. Here is another consequence:

?
ldoar H FIA-U and 9=3b Hen F8)=F(b)

(This question gets to the heart of univalence)

| would like to say that if a and b are equal, then F(a) and F(b) are in
some sense the same type. E.g. because there is a proof x + y =y + X,
then I'd like to know Vec(x + y) ?= Vec(y + x). Recall this is not true
definitionally.

Q: | see why this is true, but what is

\/\/%’é"]' dOQS l'i' Mee N chf the reason you can't just use the] rule

to prove this, by fiddling with universe
fwo Types $o be QC{u\Vz’('M 7 levels?

A: You're anticipating what I'm going to say.

Weat F(3) > F(L)
e.9. 2R Fla)— F(L). \sequi\;('(—‘)
rk/ lavedide up Fo higher \I\Oho'}oﬁ
o Y, D

This equivalence means | can TRANSPORT =
i R~ ~
a type from F(a) to F(b), and back again (N bsher cpll

Vecboﬂ) Vee(y +m)
Q: Does this only work for index types?
_, \V4 f A: This works for arbitrary types. Just
e"\"" \/n 'F make F the constant type.
W \s not vsefuly tio more
m+ ldonfiey! ! ! petih dols not l?zr Vs do enyihhyr

Not\ces \F 3=y b , then (3P FPL'p[e)zqF@)

Problem: what is the relationship between paths in U, and equivalences?
The equivalences let us move things from A to B, which has additional
structure (a map backward).

Q: How is this different from isomorphisms in CT
A: This is equivalence in CT; e.g. an equivalence
of categories.

.\ adLf
-

Idea: turn paths into equivalences. So idtoequiv(ap F p) will actually let
us do the mapping from one type to the other, and back.

K pra=pb then 'Efél\&‘)of"g: (P :F(e) = Fb)
\,\/

Sk, P'K The notation is not the best because
e you usually need to know F, but usually
'&‘Z“S(""E’ (QG‘) = id you know what it is.

define Hhis wria M&g_ lawr PU Slons S

2N Q‘l u‘\iau'\ @

) Metives Ay A Fla) = Fy) U

2) STS. %iAF Puow:)= F()
¢

33 J. :Y(rx.)u",u)P)I F(Q) '—?F(L)

Ex) shew 1) vedl, ick tlase don’
2) (—);k - P" }Yfechack

3) (p- %)# Pe Ck*

Moteover, &iarspock s 2n Qc‘u\\'Z‘?‘\CQ‘

We have glossed over what it means for something
to be an equivalence. It has a pre and a post inverse
up to higher homotopy.

Finciple of Unualeace
\NL\'F\‘ do we k’\ow?

A=yB —> A«xg

via anypett
u axlompdle

Being homotopic is to be identical,
if we were a set (e.qg. if U was just
Nat). But Nat is not the only thing; universes
let us zoom in.

What does unvelence SZ\(?
A=y® =~ A=zB

Previously, there may have been a PAUCITY of paths in U, because the only
constructor we gave you was refl. But univalence says, "Oh no, there is a boatload
of paths in U, all you need is an equivalence." And if | had a path, when |

turn it into an equivalence and back, it'll be the same type (up to higher homotopy).
If I had a universe with homotopy propositions (HProp, these are things are empty or
have one element), this would mean that interprovable propositions are equal.

For HProps (known as -1-types),dnterprovable-HRrops-are-egual.

D) _
635\”0@“" A _P"PB ~ ASG <L
05(50‘3 tlhls 18 e)nl!!’t"\elf Jseul,

Or, if we have homotopy sets (or 0O-types, a space whose path structure

is degenerate, since the only paths are self-loops), then we can say

bijective sets are equal. Intuitively, there is no fine structure to elements; either
it's the same or not. That's what sets are. Sets are a degenerate form of types.

Generic programming is all about the functoriality of data constructors.
And since HoTT is all about functoriality, you can make this all work.

The univalence axiom has lots of implications.

The interesting thing is we treat the proposition as a type, and we show that
this type is equivalent to the space of equivalences. This is beautiful: it
generalizes the conventional mathematical notion, because it speaks of

the equivalence of proofs. From a CS point of view, this is where all the action is.

Claim: Agda is vastly better for HOTT then Coq.

