When | originally taught this class, | used the pi-calculus to talk about
the operational semantics of linear logic. Unfortunately, many of the
people who were taking the class were unfamiliar with the pi-calculus

so the ended up having to learn both at the same time. This did not
work so well. So this year, I'm doing a modified format to avoid having to
do this.

omitting persistent statements for simplicity
SQC[‘}Q"{ X, ;A! 5 " x/\"Ay\ — P (o: A)
___\/__/
Chznne\s 40 vse chamels we povde

Comprtes vzlve of dyme A

vea\l In ype Aleory F’i—M‘.A/ f *
oteof of A

ke of e A

So we no longer call our rhs "terms", instead, we call them
"processes". Furthermore, they don't reduce to "values", instead,
they communicate over a channel.

We communicate in two ways: by providing a service (channel),
and by consuming a service.

So we are going to talk about what our logical rules mean now explicitly
talking about channels and processes.

dp forsdiy

Importantly: the communication
can be BOTH WAYS. It is like
an wire that connects x and y.

YA [xe—y] (ot A) |

Q: Can you say something about variable scoping?
A: The scope is the sequent itself. In the simply typed version,
propositions don't contain the variables; so there is no notion
of dependence.
Dependent linear logic is an open research question.

Me¥s ut

Wndleates i ' As V12 %

oRps v % ap

AP (o A) Ay x: A-G iz C chr o
— : A Compoddion
4 DA (va) (P %)= C

Aese ¢
W\ \25”@"\ q/x. Pﬁ.p Q% — 3H' {\o'l'Z"“”\
% the flavor of this is
that you do something,
% s a ﬂa_\,ﬁe_/chz_lﬂ) 300\ "i‘ﬂ and then continue.
ORDER is important!
(in pi calculus, this is
not true.)

Interestingly enough, we identify processes by their output processes.
However, both the bottom and the top produce z. This has to do with
the asymmetry to linear logic, where you can use multiple resources
but can only output one resource.

Q: If Q happens to not run x, they run in parallel?

A: This is impossible. It's a linear variable so it must be used, and must

be used once. So it is in fact very difficult to represent a process calculus where
things run independently without interacting.

Q: If you identify the process on the right with the variable, why do you need it?
A: When you plug them together, they communicate along channel x.

If you don't have variables, you cannot actually have the communication
between the two processes.

Q: Why do you need the variable for P?

A: Well, P provides the service along x.

Q: Are the superscripts necessary?

A: No. I'm just writing them so you remember what the rules are. But the
channel is absolutely necessary.

Q: What if you changed the identity rule so that it didn't need it on the

right side, it seems cut would still be valid?

A: Well, the cut would be valid, but you wouldn't know what P would do
which has to do with actions along the channel x. If you erase x, the program
makes no sense; even though x is linear, it has TWO occurrences, one in

P and one in Q. Thisgios the way you plug together two processes.

P'x o

Q: Why is this better for distributed systems?

A: You can identify this as the location the process runs. BTW, this
presentation is called a "synchronous calculus" in the literature, where

they have to match exactly. In an asynchronous calculus, you can send

and keep working. We have a paper on that, but it is not in this presentation.
This is an interesting fact: the LOGIC does not determine the COMPUTATION.

Warning: the programs in this lecture are not that interesting; we'll
need inductive types and coinductive types so that we can send
data around. So take faith!

\
\anhe fust Se e P 7 len
a\ﬁ ¢ [be a Ja

¢ X
A P)I::Y;A A, Q:=x:8 (&R)
A,, AZ. F— Send x %'yé——]_)yg', Q7° . x;A@B

Lraces close y

Idea: output A (not the process itself, bu@ channel y
which provides A) along x, then behave as B along x. (We can send

processes on channels, but usually we just send channels on channels.)

We also break symmetry here, due to sequentiality. We could
also do B first, and then A.

Al))"'A, % :6}- R%"J‘/ “zZiC
A,,K'-A®Bl—' yérecvx',R% 2 2iC

(&)

Q: Does A tensor B imply B tensor A?
A: Yes, we can do this. | am going to do this after the formal semantics.

viA®BH 7 T 1 uxiBeA

Recall we had some checks for the logical rules last lecture. This is very
similar when we do reduction on proofs, as a result of manipulations on
the proof we're working with. So now we need to figure out what proof

reduction corresponds to computationally.

Cut reduction is COMMUNICATION.

In natural deduction, proof reduction = substitution
In sequent calculus, proof reduction = communication

It is @ much smaller unit of computation than substitution: we perform
a very small step of communication (one send is matched up with one
receive, and then we continue). No global substitution. This is true even
when you have sequent calculus formulations of intuitionistic logic.

Recall that we know how to represent computation as forward inference.

So we will use this to describe the semantics (rather than leaning on pi-calculus,
which would maket his very easy.)

Proc(P,), f)(oc (Pz) bes ‘O(oc (Pn) %y AI
State +zznT: Hien

We know how to do this from the original lecture! (Ignore the connectives

for now.
! / / free vlaSles RN
-J

pcoc (Send & gyé"Pyg’, Qa) peoc (74 feev 3; Na#)]
f)roc(Pb) PfOC(Qa) P(occgg)b) J

tresh !

In process calculus, this is called a bound output.

Q: In the premise, we have ys in both processes. Can you change ay
to something else?

A: Yep. [updated in notes]. Scope of y is inside the braces, scope of
z is inside the process.

Time to show the previous problem. Recall proofs are processes! So build
it up using the proof.

— Td
yiB ¥ [y'e y]iy"iB 2o A [lxez 1A A
22 A, Y B send xfy'elyeyl}; [xez]s x:B0A
Y: A®B = Z<vecy y; Sead xiy'(—-—[y'é_y]} clxez] 28 A

Lig

QY

R

Z.A & Veov ¥, Y -A®B x BAA
Send o %y‘*f— [y «— y]g-) y:8
xez)

&'Hn\s nappens Fle quantly,
So often 827’ S(’I\{l

*Y j
Channels CHANGE TYPE as communication proceeds!

Typically you don't have to write these programs, but these are what are at
the bottom of it.

One thing that | don't want to discuss is linear implication.

X A -0 6 Input on A and behave as B. We've already got enough
' process expressions to express this; right rule is
a receive, left rule is a send. But there are no new

computational properties so | will skip it.

The fact that they are adjoint causes linear implication on the right to have
the same computational meaning as tensor product on the left, and vice versa.

proc (V. sz Q;) 3]
— —
proc (P%) proc(Q)

It turns out there is
another way to do this

ﬁPCOC([3 & b]l proc (Qa) which keeps the process

c C(Q) around, and forward
pro b values. But this is wasteful.

Note that in the pi calculus, there is a concept of "scope extrusion", because
private channels can be passed around by the processes that have access
to it. All a private allocation means is that it is not referred to by anyone

at the time it is allocated.

1L
= close (%) : 1

AFR™ iz C

1R
A, % L wait(n); R7 02 C

proc(close(3) proc(wait(a); R)
P{ ocC (R')

So 1 (tensor unit) simply terminates a process.

AF PFuxiA a-QTix: B gp
cose reev of 7,5 P*I T, Q% v x: AXB

Intuitively, you have to input along x whether or not you want A or B.

Ay ARy 2 C YLy
A, 0 A¥B - send 71, RE 5z C

process (cose fecv 3 of T, P* | Tm,9Q") plotess (Send 3 71,2 Ry)
B process(p?) process (RS)

Offer choice between A and B along x % A& B

Provide either A opr B along x X A@G

P(eu\ew ‘Po(f\QX‘[: '{2\“'\(’.\

2% $Rle —o Pl B
R~ waxl ot e««kmd\ng SELTS

Natsdrem = nat ® natsteem (conductive)

Q: Because the first nat is waiting for
You could write ’P % had s«t{e;,\,\ a receive, this program terminates. Is

a filter predicate there a type that doesn't terminate?

which will not A: The obvious program doesn't terminate.
roacive b SR B (st —o stack) push

this fails the % (nat@1) ® stack) poP

coinductive

definition test. % 1 dea\locote

We'll write two programs: one that is a single program
with a stack init, and another where each element is its
own process and they are linked together.

If cut elimination holds, then these are strongly normalizing for pure programs.
With recursion, it may not terminate unless you have some conditions.

Q: I've been working on the A tensor B and B tensor A proof. | can

do it mechanically, but I'm looking for intuition.

A: We'll get lots of programs; next lecture is just writing programs.
Hopefully by then, we'll have an idea what these things mean. But

| think that you're not alone: the reason why this process interpretation
has been missed is because it's intuitionistic logic (and Girard insisted
on classical logic), and two is because tensor is asymmetric. So it's

not a coincidence that this is not intuitive.

Q: Is there a symmetric version?

A: There is some flexibility. | wasn't going to say very much about it.

Q: Was Girard insisting on classical because there is something nice?

A: Girard was interested in the notion of a proof net, which is much more
straightforward in the classical case. His claim is that the classical
operation is already constructive, so we don't need an intuitionistic version.
But if you try to build a process interpretation, the intuitionistic version is
more intuitive; in the classical case, there is no correspondence between
a process and proposition.

Q: What's the difference between it?

A: In the mtwt&nﬁt/li version,

But in classical logic, there can be multiple things on the right hand side:

Linear implication changes meaning in this setting.

Q: So how do you encode recursive types in linear logic? If linear logic
has this cut elimination property, there must be a way to do it in the base
logic.

A: Well, one way to do it is to just add it, because the theory is open ended.
Alternatively, you can use the polymorphic version of linear logic, to use
standard polymorphic encodings of data types. | will not do that, so we
will add it as new type constructors in the logic which is consistent with
what we already have.

Q: Cut elimination would not hold anymore?

A: It depends on what restrictions you place. If you do it will hold, if you
don't it won't.

Q: In ordinary intuitionistic type theory, you get different computation

types when you do fixpoints/cofixpoints from inductive types.

A: I don't know the answer. We have not investigated the metatheory

of this with arbitrary inductive/coinductive types. We have just submitted

a paper which is a first step for this. We have also written down a dependent
version, but recall in dependent types equality plays a central role, but

what kind of equality do you want to impose between processes? Strong
bisimulation? Weak bisimulation? We don't know.

Q: Is it common to do cut elimination in this way, where you use the
[indistinct] rule, instead of just permuting in the logic itself?

A: The difference between cut elimination and this thing, is it's a deep

thing; normalizing the term even under lambdas, whereas when we

hit a lambda binder, we don't normalize anymore. Here, when we

hit a send/receive, we stop. That is the difference between computation

and full cut elimination is where you start. This is the same as in

functional programming languages.

Q: But you can still an analog of call by value, where instead of these rules,
when you take two processes, you just reduce the [indistinct] of the two
processes.

A: We did that in the original paper. The difficulty was our proofs were in the
pi calculus, and it's a little tricky for where you can apply structural equivalence.
The details are tricky. But you can do that too.

