Secure Compilation
Lecture 2
Closure Conversion
Renate Robin Eilers Cristina Matache Baber Rehman
June 24, 2019

This is the second talk presented by Amal Ahmed in OPLSS 2019, University
of Oregon, USA.

1 Source Language

Types We just have integers and function in source language.

o =1int| o — o9
Terms
vi=zx|n|Ax:oe
ex=v|if0v ey ea | vy v |let x =e; in eg

So ey es is a shorthand for let x = ey in let y = e in x ¥.
Evaluation contexts:
E:=[]|letz=Finey

The language has a typing judgement I' I- e : ¢ and a small-step call-by-value
operational semantics e — €’.

2 Target Language

Types and terms

Tu=int | (11,...,70) = 7 | {11, ., T0) | | FaT
ve=z|n|ANTTT).e| {v1,...,v,) | pack(r, v) as Ja.T
ex=v|if0ve; ey | vy (V) |7 v | unpack(e, 2) =v in ey | let & = ey in ey

Typing contexts:

A=A«
Fe=-|Tyz:7

Typing judgements: A T'ke:7
To do closure conversion, we want functions to have a closed body:
JzrThRe: 7
ATHEANTT)e: (7) =7
AT Ro: T[T /a]
A;T F pack(7, v) as Ja.7: JauT

Example 1. A term of type Ja. a X (a — int) is:

w = pack(bool, (true, Az :bool.5)) as Ja.aw X (v — int)

AT Ho: Jar AT x:7hey AbF Ty

A;T - unpack(a,) =v ines : 7o

In the rule above « is not allowed to appear in 75.

Example 2. A well-typed term is:
unpack(qa,) = w in (72 z) (71 x)

where w is defined as in the previous example.

3 Translation
Translation of types: ot

z'ntgf =intr

(Jl — 02)+ = Elaenv' <(aenv7 Jfr) — U;ra aenv>

Typing context translation: I‘;

(.)+ =.

(Fs,xs : 0’)+ = Fg,Z‘T : 0'+

Term translation: I's Feg:o ~+ er where -; 1"JSr Fer:ot

FS(IS) =0
I'skxg:0~ a7 I'stkng:intg ~ nr
Ysys- -, Ys, = free variables(A\zg : 0.eg) Pstys, :0;
Veode = ANz 2 (o], ... o)) .er[(mi 2)/yr,] I's,zs:0Feg:0~er
st Axs:oes:o— o ~pack({o],...,00), Weode, (Yry,---,yr,))) as (¢ — o)

where er[(m; 2)/yr,] is a shorthand for

let yp, =m zin ...let yr, =7, z in e

Fsl—’usz:O'QM-WUT2 Fsl—vsltUg—)Uval

I's Fvs, vs, : 0~ unpack(c, p) = vy, in (71 p) (72 p, vp,)

The rules for 1f0 and let are defined according to the structure of the terms.

4 Preservation Theorem

Theorem 4.1 (Type Preservation). IfI'Fes : 0 and ' - eg : a ~ er then
F;r = er ! 0'+

For correctness, we want to show eg ~ er. This is not contexual equivalance
because source language and target language are two different languages. There
are many ways to prove compiler correction. We want to say that:

when eg ~ er then o ~ ot

5 Logical Relations

In logical relations we map related input to related outputs. Same source value
and target value are related.

Values V[o] = {(vs,vr) | -Fuvsio A-;-Fopot ... }
Integers V[ints] = {(ns , nr)}

Function V[o;—0s] = {(Ax:01 - es pack (Teny , (A (Zim,wr:07) - er\Vens)
) [V(vs , vr) € V]o1] . (es[vs/zs).er [venw/z,0r/27]) € € [02]}

Typing Judgement £ [o]] = {(es,er) - F es:o0 A -5 Fepio™ AVog - eg —*
vg = Jur - er =" v A (vs , vr) €V [o] AVur - er —* vr = Jug - eg —*
vs A (vg,or) € v [o]}

Target language behavious is shown in source language.

Definition 5.0.1. T's - eg ~ er:0 =T'g Fegio A - ; Fg Fer:ot AV (vs,yT)
€ G [o] - (vs(es)r(er)) € € [o].

S and T are like holes in expression. They are not complete program. This
1s like substitution and linking. It will be combined with other code.

Ys = {x51 —> Vg1 ... }
Yr = {le — U711 }
Gl] ={o - ¢}

Glrso] = {(vsfts —> vs] , yrler — vr]) | (vs,91) € GlesT] A (vs,vr)

€ Vlzs:o]}
Theorem 5.1 (Compiler Correctness). IfI's b eg:0 ~ er thenT' - eg = er:o.

Proof. This theorem can be proved by induction on typing derivation of source
language. It can be proved just by unfoalding the definitions. O

Lemma 5.2 (Fundamental Property). I' - eg:c = I' - eg = er:o

