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1 Recap: Soundness

This talk is mainly about soundness proof, type inference, and examples in
RAML. Talk started by a recap of progress and preservation which were formu-
lated in last talk.

Theorem 1.1 (Progress). If `qq′ e : τ and p ≥ q then either e is a value or ∃e′, p′
s.t. 〈e, p〉 7→ 〈e′, p′〉.

Theorem 1.2 (Preservation). If `qq′ e : τ , p ≥ q and 〈e, p〉 7→ 〈e′, p′〉 then

`p
′

q′ e
′ : τ .

Proof notes. Preservation is difficult to prove. It is proved by nested induction
on `qq′ e : τ and 〈e, p〉 7→ 〈e′, p′〉. There are some tricky lemmas to prove like
substitution which only holds on values.

Alternative soundness theorem: Recall the judgement V ` e ⇓ v | (q, q′)

Definition 1.2.1. φ(V : Γ) =
∑

x∈dom(Γ) φ(V (x) : Γ(x))

where Γ assigns types to variables.

Theorem 1.3. Let V : Γ and Γ `qq′ e : τ and V ` e ⇓ v | (p, p′) then φ(V :
Γ) + q ≥ p and φ(V : Γ) + q − φ(v : τ)− q′ ≥ p− p′

This theorem shows that the type derivation is a certificate for bound cor-
rectness.

2 Type inference

Example 1. We want to find a derivation for:

`00 fix
(
id. λ(x : L(unit)) matL(x; nil; y, ys.cons(y; tick{2}(id(ys)))

)
: L2(unit)→0/0 L0(unit)
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See figure 1 for the deriviation tree, where eid = fix
(
id. λ(x : L(unit))matL(x; nil; y, ys.cons(y; tick{2}(id(ys)))

)
and τid = L2(unit)→0/0 L0(unit).

For type inference we need algorithmic (or syntax-directed) rules. We change
all the typing rules to incorporate the structural rules:

Example 2.
q ≥ q′ τ <: τ ′

Γ, x : τ `qq′ x : τ ′

Algorithm for type inference:

1. Infer usual types (without annotations), which results in a type derivation
(like example in figure 1 with all annotations removed);

2. Add potential variables where a potential annotation is required, both in
τid and in the derivation. See figure 2. Note the this step is only partially
done in the figure;

τid becomes Lp(unit)→q/q′ Lp′
(unit)

3. Derive from the typing rules linear constraints on potential variables;

Example 3. For the fix example, some of the constraints are:

r0 ≥ r′0 r2 ≤ q p1 ≤ p r3 ≥ r′3 p2 ≤ p1

r1 = 0 r′2 ≥ q′ p′1 ≥ p′ r3 ≤ r2 p′2 ≥ p2

r′1 = 0

r4 ≤ r′3 + p1 r′4 < r′2

s1 ≥ s2 + 2 s′1 = s′2

4. Solve constraints with LP solver;

5. Objective is the sum of initial potential annotations.

Example 4. For the fix example the objective is to minimize p+ q.

3 Implementation in RAML and examples

Live RAML (Resource aware ML) demo showing binary counter, using the
source code displayed in figure 3. Second example with queue.
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let rec id x =
match x with
| [ ] −> [ ]
| y : : ys −> y : : ( let = Raml . t i c k 2 .0 in ys )

type b i t = Zero | One

let rec i n c counter =
match counter with
| [ ] −> [ One ]
| Zero : : bs −> One : : bs
| One : : bs −> Zero : : ( inc bs )

let rec in many n =
match n with
| Z −> [ ]
| S n’−> i n c ( inc many n ’ )

Figure 3: Code for binary counter example
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