
From Singleton to Linear Logic

Frank Pfenning

OPLSS 2019

June 24, 2019

Date Performed: June 18th 2019
Students: J.W.N. Paulus

R. Gurdeep Singh
H. C. A. Tavante

3 Lecture 3: From Singleton to linear logic

3.1 A counter

We shall implement a counter with the following:

bin = ⊕ {b0 : bin, b1 : bin, e : α}

bin ` succ bin

succ = caseL(b0 ⇒ R.b1;↔ (1)

|b1 ⇒ R.b0; succ (2)

|e⇒ R.b1;R.e;↔) (3)

ctr = &{inc : ctr, reset : ctr, val : bin} (4)

bin ` counter : ctr

counter = caseR(inc⇒ succ
bin

| counter

|reset⇒ delete
bin

| counter
|val⇒↔)

1

For delete:

bin ` delete : bin

delete = caseL(b0 ⇒ delete

|b1 ⇒ delete

|e⇒ R.e;↔)

3.2 Turing machine

To show that the system at hand is Turing complete, we emulate a Turing
machine (TM) (Wikipeda).
A Turing machine is a theoretical device with and infinite tape as memory. A
head read and writes to this tape and can travel left or right. The movement
and actions of the head are encoded in a so called transition function δ.
The transition function δ is has following form:

δ(q︸︷︷︸
current state

, a︸︷︷︸
current tape data

) = (b︸︷︷︸
new tape contents

,
left
right︸ ︷︷ ︸

movement

, p︸︷︷︸
next state

)

We will represent each state of our TM as a process that has tape data left and
right of it. That is, the state is encoded as sitting in between to cells of the tape.
For clarity, we give each state a name with a triangle (J or I) that indicates
at which location on the tape the head in “looking”.
The states of our Turing machine will be consuming data on the tape. Therefore,
the tape must be emitting data, or in type terms, the tape should have an
external choice type (⊕). The tape left and right of the head should emit data
in opposite directions. The tape data should be coming towards the processes.
In our pictures we indicate the direction that tape content is being emitted in
with an arrow. Let {a, b, . . . } be the alphabet of the tape. The type of the tape
left of the head is given by tape, the content on the right has type etap:

tape = ⊕{a : tape, b : tape, . . . } epat = ⊕{a : tape, b : tape, . . . }

For a state q of the Turing machine we wish to implement, we have two states
in our logical system. One where the state “looks” left (J q) and one where the
state “looks” right (q I).

tape `J q : epat

tape ` q I: epat

To implement the TMs transition function, we need to define the above two
processes for each state q in the TM. These processes should take into account
the value of δ(q, ·).

2

http://en.wikipedia.org/wiki/Turing_machine

a. For left moving rules (δ(q, a) = (b, left, p)) we have that:

• . . . −→a J q . . . must become . . . J p
←−
b . . .

tape ` J q : epat

J q = caseL(a⇒J p|(Lb;↔) , b⇒ . . .)

• . . . q I ←−a . . . must become . . . J p
←−
b . . .

tape `q I: epat

q I= caseR(a⇒J p|(Lb;↔) , b⇒ . . .)

b. For right moving rules (δ(q, a) = (b,right, p)) we have that:

• . . . −→a J q . . . must become . . .
−→
b q I . . .

tape ` J q : epat

J q = caseL(a⇒ (Rb;↔)|q I , b⇒ . . .)

• . . . −→a q I . . . must become . . .
−→
b q I . . .

tape ` J q : epat

J q = caseR(a⇒ (Rb;↔)|q I , b⇒ . . .)

With this we have a translation scheme to translate any TM to our model. If
s is the start state of the TM, we can use s I to emulate the TM. (One must
still proof that the executions will yield the same result...)

3

Classical TM representation

q
↓

· · · a a a a a∗ a a a a a · · · infinite tape

Our TM representation

current
tape content before state tape content after
· · · −→a −→a −→a −→a −→a∗ J q ←−a ←−a ←−a ←−a · · ·

Figure 1: Top: A classical TM that is in state q and has a∗ on the tape.
Bottom:Visualization of a process “J q” on a tape. The Turing machines current
cell under the head contains a∗

4

