Coalgebraic Semantics Lecture 1

Farzaneh Derakhshan, Tao Gu, Aditya Oak
17 June, 2019

This lecture is a first introduction to coalgebra. We first recall the induc-
tive data types and the principle of induction. Then we introduce some basic
coinductive data types and the principle of coinduction.

1 Finite and infinite data types

Throughout this note we fix an arbitrary alphabet set A. The elements in A
are called letters.

Example 1. Our first example is the inductive data structure A* consisting of
all finite words on A. There are several ways of describing A*:

e In OCaml, one can write:

type list a = nil | cons a 1

e By derivation rules:

ac A ue A*
ec A* a-uc A*

Given a letter in A4 and a word in A*, we can construct a new word in A* by
appending the letter to the word. The above definition does not only define A*
using its constructors, but also provides a way to inductively define functions
operating on A*. In the following Example 7?7 we use constructors of A* to
define the function len.

Example 2. We define function len: 4 — N inductively using the constructors
of A*:

len(e) =0, len(a - u) =1+ len(u).
Intuitively len simply counts the length of a finite word. By the inductive

construction of finite words, it is enough to explain the behaviour of the function
(i) on the empty word, and (ii) on a - u assuming its behaviour on wu.



Example 3. Concatenation function ; : A* x A* — A* is defined by structural
induction on its first argument as:

€U =u, (a-u);v=a-(u;v).
Similar to the previous example, we used recursive call to define concatenation.

We can also prove properties of functions defined on inductive types using
their constructors:

Example 4. We want to prove len(u;v) = len(u) + len(v) given the definitions
of len and ; functions in examples ?? and ??. The proof goes by induction on
the first argument:

Base case. len(e;v) = len(v) = 0 + len(v) = len(e) + len(v)

Inductive case. len(a-u;v) =len(a-(u;v)) = 14 len(u;v) by definitions of len
and concatenation. By inductive hypothesis, len(u;v) = len(u) + len(v).
Thus len(a - u;v) = 1+ len(u;v) = 1 + len(u) + len(v) = len(a - u) + len(v).

Inductive datatypes come with an inductive principle that works on their
constructors. For the coinductive infinite data types we have a similar situation.
But instead of defining the values of constructors, for coinductive types we define
the value of deconstructors in a dual manner.

2 Infinite Sequences over A

The set A“ of all infinite sequences over A is defined as {0 | 0: N — A}. We
use the notation o = (09,01, ...). We define deconstructing functions

head(o) == &(0)
tail(o)(n) =o(n+1)

Coalgebraic semantics: It can be considered as a way to reason about
the programs that operate on infinite data structures. More details on this will
be provided in the following lectures.

2.1 Functions over A¥

We can define some basic operations on A“:
e even: AY — AY,
even: (0'0,0'1, .. ) — (0’0,0’270'4, .. )
e odd: AY — A¥

odd: (09,01,...)+ (01,03,05,...)



e merge: AY x AY — A¥
merge: (09,01,...),(T0,71,...) = (00, 70,01, T1,...)

Recursive definitions of the above given functions:

. head(merge(o, 7)) = head(o)
tail(merge(o, 7)) = merge(r, tail(0)))

. {head(even(a)) = head(o)

tail(even(o)) = even(tail(tail(c))) = odd(tail(0))
. head(odd(c)) = head(tail(0))
tail(odd(o)) = tail(even(tail(c)))
Proposition 5. merge(even(c),odd(c)) =0o
Proof. Let p = merge(even(o),0dd(c)). Now we show that Vn € N, p(n) = o(n):

Base case.

p(0) = head(merge(even(c), odd(0)))
= head(even(o))
= head(o)
=0a(0)

Inductive case.

p(n + 1) = merge(odd(o), tail(even(o)))(n)
= merge(odd(o), odd(tail(0)))(n)
= merge(even(tail(o)), odd(tail(c)))(n) (IH)
= tail(o)(n)
=o(n+1)

Proposition 6. even(merge(o, 7)) =0
Proof. Let p = even(merge(o, 7)).

Base case.

p(0) = merge(c, 7)(0)
=0o(0)



Inductive case.

p(n+1) = merge(o, 7)(2(n + 1))
=o(n+1)

Similarly we can show odd(merge(o, 7)) = 7.

3 Bisimulation and Coinduction

Proof by induction is common and useful on inductive data structures. Simi-
larly, one would expect coinductive proof on coinductive data structures. One
convenient way for this is to find a bisimulation, and then apply the coinductive
principle. To get the feeling of coinduction, we will focus on infinite streams A*
here.

Definition 7. A relation R C A* x A* is a bisimulation if V(o,7) € R,
1. head(o) = head(7)
2. (tail(o), tail(o)) € R

We say that two infinite sequences o and 7 are bisimilar, denoted as o ~ T,
if there exists some bisimulation between them. Bisimulation provides a way of
proving by coinduction:

Lemma 8 (Coinductive Principle for A*). For all 0,7 € A*,
o~NT=>0=T

Proof. Suppose R C A* x A* is a bisimulation such that (o,7) € R. It suffices
to show that o(n) = 7(n), for all n € N. We prove by induction on n.

e For n = 0, this is exactly (1) in definition ??.

e For n + 1, note that by (2) in definition ?? we have tail(c) ~ tail(7). So

we have:
o(n+ 1) =tail(o)(n)
= tail(7)(n) (TH)
=7(n+1)
Therefore o = 7. O

In some cases, we may not have a bisimulation at first sight. It is common
that we start from the conclusion we want to proof, and construct a bisimulation
by adding the necessary pairs.



Example 9. Consider the equation
merge(even(c),odd(o)) = o (1)

To derive (?7) using the coinduction principle, we would like to construct some
bisimulation R which contains the pair consisting of the streams on both sides
of (?7?). Consider the relation

Ry = {(merge(even(a),0dd(c)),0) | o € A}

To ensure condition (2) in definition ??, we need to add the following pairs to
the relation:

Ry = {(tail(merge(even (o), 0dd(0))), tail(c)) | 0 € A¥}

Proceeding like this, we get a sequence of relations, and the union of all these
relations should give a bisimulation. Fortunately we do not need to add a lot,
since R; is already included in Ry:

tail(merge(even(c),odd(o))) = merge(odd(o), tail(even(o)))
= merge(even(tail(o)), odd(tail(c)))

For any o, consider T = tail(c), and we know that (merge(even(),o0dd(7)),7) €
Ro.

Example 10. Consider the equation
even(merge(o,7)) =0 (2)
Following the above strategy, we construct a sequence of relations:

Ry = {(even(merge(o,7)),0) | 0,7 € A“}
Ry = {(tail(even(merge(o, 7)), tail(o)) | o, 7 € A“}
Ry = {(tail(tail(even(merge(o, 7)))), tail(tail(0))) | o, 7 € A}

Note that
tail(even(merge(o, 7))) = odd(tail(merge(o, 7)))
= odd(merge(, tail(0)))
tail(odd(merge(o, 7))) = even(tail(merge(o, 7)))
= even(merge(T, tail(0)))
Then it is easy to see that Rg 2 Ry 2 --- and R; O R3 D ---. So the union

of the whole sequence terminates as R := Ry U R;. R is then a bisimulation
containing all (even(merge(o, 7)), o).



Homework

Suppose R, S C A¥ x AY are bisimulations.

1. R; S is bisimulation, where (z,z) € R;S iff 3y such that (x,y) € R and
(y,z) € S.

2. R’ is bisimulation, where (z,y) € R° iff (y,z) € R.



