RSITY OF COPENHAGEN Department of Cormpute

Faculty of Science

Smart digital contracts:
Algebraic foundations for resource
accounting

Fritz Henglein
Email: henglein@diku.dk, henglein@deondigital.com

OPLSS 2019, 2019-06-26

UNIVERSITY OF COPENHAGEN Department of Computer Science

Recall

Agents:

Events:

Resources:

Contract:

Persons, companies, robots, devices that sign events and
their evidence
Significant real-world events that update the state of the
(business) world
@ Business events: Transmission of information and other
events whose resource effect is idempotent (e.g. queries)
@ Resource events: Producing (transforming) and
transferring resources, which have a resource effect
(who owns or possesses what)
Physical (goods, services) or digital (money, rights) resources
that cannot/must not be freely copied and discarded
A classifier of event sequences into “happy” paths (correct
contract executions) and “breaches” (incorrect contract
executions).

UNIVERSITY OF COPENHAGEN Department of Computer Science

Today

Algebraic model of resources, with user-definable resource types
(“multi-currency”)

Resource ownership via coproducts

Resource transfers via kernels

Operations and properties: vector space operations and basic linear
algebra

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Vector spaces

e Field: (K,+,—,0,+,/,1), commutative ring with multiplication and
division

@ Vector space over K: (V,+,—,0,-), usual properties

@ Dimension of vector space: Cardinality of smallest subset of V that
spans all of V

Example
The reals R are a field and simultaneously a vector space of dimension 1
over itself.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Vector space constructions
Let V, be vector spaces.
[T.ex Vi (product): Functions f from x : X to Vi
[T.ex Vi (coproduct): Functions f from x : X to V, with finite support
Supp(f) = {x | f(x) # 0}; that is, finite maps with default
return value 0.
V —1 W (linear map space): Functions (linear maps) f from V to W
such that f(vy + wo) = f(v1) + f(v2) and f(k - v) = k- f(v).
U C V (subspace): Subset U of V that is closed under 0,4, —, -
If V.=V forall x € X, write
IIv = 11V
X xeX

IIv = 11V

xeX

UNIVERSITY OF COPENHAGEN Department of Computer Science

Vector space constructions: Examples

Let X be a set.

Vi @ Vo (direct sum): [0y Vi (= Vi x Vo)

Freex(X) (free vector space): [[x K

> (IIx V) =1 V (sum, addition):
SUXxt v, Xn i Vel) =i F o F vy

p* : Freex(X) —1 K (valuation under price p : X — K): Unique
extension of p to Freex(X).

ker f C V (kernel of f:V — W): {x € V| f(x)=0}.

imf C W (image of f: V — W): {f(x)|x € V}.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Vector space constructions: Examples of examples

o (58) c R®R =R?
o 5'X1+8’X2:{X1ZS,XQZS}EH{Xl,Xz}R
@ > {X1:5X,:8}=5+8=13
o p*({X1:5,X2:8})=4-5+3-8=144
for p(X1) = 4, p(Xz) = 3.
o kerp* = {{X1:x1,X2 : x2} |4-x1+3-x =0}.

e imp* =R.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Agents and resources

Agents A: A set. A = {Alice, Bob, Charlie, . . .}.
Resource types X: A set. X = {USD, iPhone,...}.

Resources R: A vector space. R =]],R

Ownership states O: A vector space. O =][,R

Transfers T: Subspace of O. T =3, R=ker(}>_:][,R—1 R)

@ A simple resource: 50 - USD
A compound resource: 50 - USD + 2 - iPhone

A missing resource is also a resource: —50 - USD
An ownership state: {Alice : 50 - USD, Bob : 1 - iPhone + 10 - USD}
A simple (2-party) transfer: {Alice : —30 - USD, Bob : 30 - USD}

A compound (multi-party) transfer:
{Alice : —30 - USD, Bob : 20 - USD, Charlie : 10 - USD}

UNIVERSITY OF COPENHAGEN Department of Computer Science

Resource manager

o Credit limit policy: Predicate (Boolean function), classifying
ownership states into valid and invalid ones
» Usually : P, c(0) = o(a) > c(a) for all a € Ay where Ay C A.
@ Resource manager: Object (service) with
> Internal state o: An ownership state satisfying credit limit policy P.
» Method ApplyTransfer:
Receive transfer t.
If P(o+ t), update internal state to o + t and return “success”;
otherwise, return “failure”.

Credit limit policy: ~ No credit (no negative amounts of any resource type)
Initial ownership: o1 = {Alice : 50 - USD, Bob : 1 - iPhone + 10 - USD}

First transfer: t; = {Alice : —30 - USD, Bob : 30 - USD}

Second transfer: t, = {Alice : 1 - iPhone, Bob : —1 - iPhone}

Combined transfer: {Alice : 1 - iPhone — 30 - USD, Bob : —(1 - iPhone — 30 - USD)}
Final ownership: 0, = {Alice : 1 - iPhone + 20 - USD, Bob : 40 - USD}

0 ®

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Ownership state as balance plus transfer

Let f : V. —1 W. Then:

V = imf @kerf
dimV = dim(imf) + dim(ker f).

Corollary

ozHRgR@ZR:R@T
A A

Intuitively: Ownership state =2 a resource balance owned by one particular
agent b € A and some transfer; for example:

o = {Bank:60-USD,Alice : 30 - USD, Bob : 40 - USD}
{Bank : 130 - USD} +
{Bank : —70 - USD, Alice : 30 - USD, Bob : 40 - USD} ®

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

Resource manager properties

o A multiset M = {t1,...,t,} of transfers can be applied by a resource
manager in any order: any two orders that succeed result in the same
ownership state. Some orders may fail, however, due to the resource
manager’s credit limit policy.

o If there is some successful order of applying M satisfying P, then
applying the single “netted” transfer t => M =37 , t; is valid,
too. The converse is not true.

@ The internal ownership state can be stored as a pair, a balance and a
transfer.

@ The balance component in a resource manager is invariant. Only the
transfer component is updated by ApplyTransfer.

11

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Zero-balance resource managers

@ Balance of a resource manager can be kept in another resource

manager.
@ Zero-balance resource manager: internal state of resource manager
consists of a transfer only; resource balance component is implicitly 0.

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Zero-balance resource managers: Example
Two resource managers:

o1 = {Bank;:60-USD, Alice : 30 - USD, Bob : 40 - USD}
= {Bank; : 130- USD} +
{Bank; : —70 - USD, Alice : 30 - USD, Bob : 40 - USD}
0 = {Bank,:10-USD, Alice : 100 - USD, Bob : 200 - USD}
= {Bank,:310-USD} +
{Bank; : —300 - USD, Alice : 100 - USD, Bob : 200 - USD}

Replace by three resource managers mainting transfers only:

ti1 = {Bank;:—70-USD, Alice: 30 - USD, Bob : 40 - USD}
t, = {Bank;: —300- USD, Alice : 100 - USD, Bob : 200 - USD}
ty = {Banko: —440- USD, Bank; : 130 - USD, Bank, : 310 - USD}

where Bankg is another agent, corresponding to the central bank in the
banking system or the equity account in a company's chart of accounts
Note: {Bankg: —> (01 + 02)} + 01 + 02 = to + t1 + to is a transfer.

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Double-entry bookkeeping

Fundamental principle of double-entry bookkeeping:
@ All (scalar) account (2 agent) balances sum to 0.

e Every transaction consists of multiple (“double”) account entries that
sum to 0.

“Equity” plays role of resource balance when decomposing ownership state
into resource balance and transfer satisfying

Assets — Liabilities — Equity = 0

14

UNIVERSITY OF COPENHAGEN Department of Computer Science

Resource accounting
Resource accounting: Double-entry bookkeeping, generalized to admit
@ arbitrary resources, not just scalars, with

@ expressive algebra (vector space) of transfers that are not composed
from possibly incorrect adding/subtracting to/from account balances,
but from a base of simple transfers; and

@ arbitrary report functions on internal state,

» often linear maps on internal ownership states or on sequences of
transfers T*, and then
» easily incrementalized to maintain report function results online
(dynamically) as new transfers arrive.
A resource manager (implemented whichever way) provides digital resource
management for arbitrary (including user-defined) resource types.

e Updating by transfers only guarantees resource preservation: No
managed resource is duplicated or lost.

o Credit limit enforcement by checking of credit limit policy.

15 ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributed resource managers by additive decompos

o ldea: Implement distributed resource manager r by a P2P network of
resource managers ri,..., rp such that ro=n.0+...r,.0.
@ The r; may be distributed themselves. Advantages:

» Some transfers can be performed locally: If r; can validate and effect a
transfer t, then no communication with other resource managers is
necessary.’

> In general, decompose transfer t into t = t; + ...+ t, and
transactionally execute all t; to r;. No communication with r; is
required if t; = 0.

! Assume credit limit policy of r is conjunction of credit limit policies r, ..., r,,..
16

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributed resource managers: Example
Let r consist of resource managers r1, r» with current ownership states
o1 = {Bank;:60-USD, Alice: 30-USD,Bob :40-USD}
= {Bank; : 130- USD} +
{Bank; : —70 - USD, Alice : 30 - USD, Bob : 40 - USD}
0, = {Bank,:10-USD, Alice : 100 - USD, Bob : 200 - USD}
= {Bank,:310-USD} +
{Bank; : —300 - USD, Alice : 100 - USD, Bob : 200 - USD}
and zero-credit policy (only nonnegative balances allowed).
o Transfer {Alice : —80 - USD, Bob : 80 - USD} can be performed by r»
without communication with ry.
o Transfer {Alice : —120 - USD, Bob : 120 - USD} cannot be performed
by either r; or rp, but it can be decomposed into t; 4 t» where
t; = {Alice : =20 - USD,Bob : 20 - USD} and
to = {Alice : —100 - USD, Bob : 100 - USD} and then performed by
transactionally executing t; on rp and t; on r.

17 ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributed resource managers: Transactionality

Nodes in a distributed resource manager need to support atomic execution
of distributed transactions, e.g. for 2-phase commit:

@ Precommit transfer t: Like ApplyTransfer, but with guarantee that, if
validated, subsequent execution of —t will succeed. For simple
transfers: deducts resource from sender, but does not make it
available yet to receiver.

e Commit transfer t: Apply previously precomitted t (remove
requirement that —t must be applicable later on). For simple
transfer: releases resource to receiver.

@ Abort transfer t: Apply —t to previously precommitted t. For simple
transfer: return resource to sender.

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributed resource managers: Discussion

@ Many freely combinable “dimensions” of decomposition possible:

» By resource type (e.g. land registry managing houses; national banking
system (with individual banks as “peers’) managing USD accounts;
the Bitcoin network for managing Bitcoin accounts (UTxOs), etc.

» By agents (e.g. residents divided into countries of residence)

» By statically or dynamically splitting off resource managers from
existing resource managers for privacy and/or load balancing purposes
(e.g. state channels, sharding).

@ Resource managers should have API for participating in distributed
transactions.

@ Algebraic resource model as semantic basis for large design space for
distributed resource managers.

19

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Summary

@ Algebra of transfers: infinite-dimensional vector space.
» The power of negative: Additive inverses important.

@ Separation of resource preservation (unrestricted algebra) and credit
limit policies (restrictions).

@ Additive decomposition of transfers: partitioning of resource
managers for distributed implementation.

20

