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1 Background & Introduction

In 1928, David Hilbert andWilhelm Ackerman proposed challenge called Entschei-
dungsproblem, or Decision Problem, which asks for the following:

”Given all the axioms of math, is there an algorithm that can tell if a
proposition is universally valid i.e. deducible from the axioms?”

The answers were published just a few years later with both Alonzo Church and
Alan Turing. No! There is no such algorithm. During the 1930s, λ-calculus ,
Turing Machines and combinatory logic were introduced, as complete models of
computation. They were later proven to be equivalent (Turing complete).

2 Untyped λ-Calculus

λ-calculus is a successful model for computable functions. It is known for its
simplicity, yet expressiveness, being able to represent any computation problem.
You can represent untyped λ-calculus using.

M ::= x | c | (M M) | (λx.M)

where:

1. V = x, y, z, x1, . . . a countable set of variables

2. C = a, b, c, a, . . . a countable set of constants.

NOTE: pure λ-calculus has no constants.

Functions bind variables and represent a computation. A term x is bound
in M if it appears in a subterm of the form λ.N. Any unbounded variable is
considered a free variable.
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2.1 Reductions

2.1.1 α-reductions

λx.M →α λy.M [x := y], y /∈ FV (M)

α-reductions are used for renaming variables, since names of bounded vari-
ables are irrelevant. λx.(x2 + 1) and λ.(y2 + 1) must be considered as equal.
It also characterizes an equivalence relation.

2.1.2 β-reductions

(λx.M)N →β M [x := N ]

β-reductions are used for function applications. Applying N to λx.M using
the past example: (λx.x2+1)5 →β 52+1 = 26. It characterizes to an equivalence
relation and a symmetric closure.

2.2 Properties

2.2.1 Confluence

Theorem 1. If M → N and M → P , then there exists some S such that both
N → S and P → S.

While the proof is beyond the current scope, there is a very important corol-
lary associated with the confluence theorem.

Corollary 1. If M → N and M → P , then P = Q.

The Corollary implies that order of the applied reductions is arbitrary and
always leads to the same result. Furthermore, it allows concurrency.

2.2.2 Normal Forms

Definition 1. N ∈ Λ is a normal form (NF) if there is no S such that N → S.

Definition 2. P ∈ Λ is strongly normalizing (SN) if all reductions of P are
finite.

The concept of SN was one of the motivators for Church to add types to
λ-calculus, as we will discuss on the following chapter.
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2.2.3 β-normal forms

Expression Description
xyzx Normal form (NF),
I ≡ λx.x Normal form (NF)
K ≡ λxy.x Normal form (NF)
S ≡ λxyz.xz(yz) Normal form (NF)
KI(KII) Normal form (NF)
Ω ≡ ∆∆ ≡ (λx.xx)(λx.xx) strongly normalizing (SN), unsolvable
KIΩ Normalizing (N)
Y ≡ λf.(λx.f(xx))(λx.f(xx)) Head normalizing (HN), solvable

The one worth highlighting the most is the self application (Ω). It is unsolvable
because it loops forever:

Ω → Ω → Ω → Ω → . . .

2.3 Logic and Arithmetic

As we previously mentioned, λ-calculus is able to represent all computable func-
tions. Therefore there has to be a way to represent propositional logic and
numerals/arithmetic.

2.3.1 Propositional logic in λ-calculus

⊤ := λxy.x
⊥ := λxy.y
¬ := λx.x⊥⊤
∧ := λxy.xy⊥
∨ := λxy.x⊤y

2.3.2 Arithmetic in λ-calculus

add := λxypg.xp(ypq)
mult := λxyz.x(yz)
succ := λxyz.y(xyz)
exp := λxy.yx
iszero := λn.n(⊤⊥)⊤

The best reference to get to know more about untyped lambda calculus is
H.P. Barendregt’s ”Lambda Calculus: Its syntax and semantics.” book.

3 Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus (STLC) is motivated by some disadvan-
tages of the untyped lambda calculus:
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• Terms like Ω do not have a normal form

• You can end up with meaningless terms like sin log because there’s no
way to restrict the arguments you provide to functions

We want types so that we can limit the computations we carry out to the ones
that are ”safe” and make sense.

There are generally two approaches to equipping lambda calculus with type
systems: Curry’s approach, which implicitly assigns types to terms, and Church’s
approach, which does so explicitly instead.

3.1 Syntax of Types

The type system can be defined over the signature (T,→), where T is some
countable set of variables - the base types or atomic types:

σ ::= α ∈ T | (σ → σ)

where → is the function type and is right-associative. σ → τ refers to the
type of functions that take an input of type σ and produce an output of type τ .

3.2 The Language

3.2.1 Type Assignment

A type assignment is an expression of the form

M : σ

where M is a λ-term and σ is a type. The type σ is assigned to the term M .

3.2.2 Declaration

A declaration is a type assignment where M (the term) is a variable:

x : σ

3.2.3 Basis (AKA context AKA environment)

A basis Γ = {x1 : σ1 . . . xn : σn} is a set of declarations in which all the variables
are different.

3.2.4 Statement AKA Sequent

A statement of the form
Γ ⊢ M : σ

is saying that the expression M has type σ under the context Γ. M is said to
be well-typed (with type σ).
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3.3 Typing Rules

The axiom states that if x has type σ in the context, then x has type σ.

The elimination rule pertains to applications, and states that if, in a certain
context, M has a function type σ → τ and N has type σ, then the application
of M to N (i.e. MN) has type τ . It gets its name because it eliminates the →
in the types of terms.

The introduction rule (so called because it introduces a →), says that if, in
a certain context where x has type σ, M has type τ , then in the same context
without x, λx : σ.M has type σ → τ .

3.4 Fundamental properties of STLC

3.4.1 Uniqueness of types

Not every term is typeable, but if a term has a type, then the type is unique.
More formally -

Γ ⊢ M : σ and Γ ⊢ M : τ =⇒ σ = τ

3.4.2 Church-Rosser Property

When reducing terms, the order in which reduction rules are applied does not
affect the eventual result. More formally, for beta reduction:

∀M,N1, N2 ∈ Λ : if M ↠β N1 and M ↠β N2, then ∃X ∈ Λ : N1 ↠β X and N2 ↠β X

3.4.3 Type preservation under reduction

Reduction or evaluation of terms does not change their type.

if M → P and M : σ then P : σ
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3.5 Strong Normalization

Strong normalization says that every well-typed term in STLC is strongly nor-
malizing, i.e. it cannot reduce indefinitely. Every reduction of the term must
end in a value.

If M : σ then M is strongly normalizing.

3.6 Expressiveness

Not every term is typeable - one example is self-application.

̸⊢ λx.xx : σ

Intuitively, self application cannot be typed in the STLC because we have to
assign the same type to both bounded occurrences of x. If we assign some type
σ to the second occurrence of x, then in order to end up with a well-typed term,
you have to assign the type σ → σ to the first occurrence. However, σ and
σ → σ cannot be the same type, leading to a contradiction.

An interesting result is that natural numbers can be encoded, by terms of the
type (σ → σ) → σ → σ. The natural number n is encoded by a lambda ab-
straction that, given a function and an argument, applies the function to the
argument n times.

n ≡ λfλx.fnx : (σ → σ) → σ → σ

Another interesting result is that when equality is taken as beta-conversion
and one interprets integers over the type (σ → σ) → σ → σ where σ is a
base type, the integer functions definable in the STLC are exactly the extended
polynomials.

3.6.1 What are the extended polynomials?

The class of extended polynomials is the smallest class of functions over N
containing

• the constant functions 0 and 1

• projections

• addition

• multiplication

• the function ifzero(n,m, p): if n = 0 then m else p
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3.7 STLC, Logic, and the Curry-Howard Correspondence

Under the Curry-Howard Correspondence, the simply-typed lambda calculus
corresponds to minimal logic. A formula is provable in minimal logic iff it is
inhabited in STLC.

3.7.1 What is the Curry-Howard correspondence?

At a high level, the Curry-Howard correspondence is the observation that there
is an isomorphism between proof systems and models of computation. A com-
mon generalization is that a proof is a program, and the formula it proves is the
type of the program.

3.7.2 What is minimal logic?

Minimal logic is intuitionistic logic without the principle of explosion (⊥ ⊢ P ).
The principle of explosion is the law that from a contradiction, any statement
can be proven.

3.7.3 What is intuitionistic logic?

Intuitionistic logic is classical logic without the principle of the excluded middle
(A ∨ ¬A) or the double-negation rule (¬¬A = A).

3.8 Decidability properties

For STLC, type checking, type inference, and type inhabitation are all decid-
able.

3.8.1 Type checking

Given a term M and type σ, does M have type σ?

((M : σ)?)

3.8.2 Type inference

Given a term M , what is its principal type?

(M :?)

This is a functional problem, since it asks to find the principal type of M . As a
decision problem, this would be framed as ”Given term M and type σ, is σ the
principal type of M?”

3.8.3 Type inhabitation

Given a type σ, does there exist some term M that has type σ?

(? : σ)
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3.9 Summary

Advantages of STLC

• All terms are strongly normalizing

• Type inference, type checking, and type inhabitation are all decidable

• Types exactly all extended polynomials

Drawbacks of STLC

• No self-application

• No recursion

• No total function

• Not Turing-complete
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