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Introduction
Probabilistic programming languages (PPLs) are of interest in PL and AI. In answering the question
of why we might want to study them, we consider these two perspectives.

PL Perspective
The goal of PL is to reason about computer programs. However, many programs deal with uncer-
tainty inherent in their problem domains. For instance:

• Randomized algorithms, such as primality testing and others, depend on random values which
are not known ahead of time.

• Distributed systems and networking need to deal with consensus decisions, such as leader
selection, which may require tie-breaking.

• Differential privacy, a property ensuring that programs don’t leak identity information, re-
quires that noise be added to data.

In order to analyze and reason about programs with uncertainty, it is useful to define probabilistic
semantics for programming languages. The study of probabilistic programming languages began
over 40 years ago with Kozen’s [2] initial formulation of probabilistic semantics.

AI Perspective
Artificial intelligence research is largely concerned with building agents that can reason rationally
about the world. In order for an agent to reason about the world, a model is needed to represent
it. Building a deterministic model of the world is infeasible due to its scale, so it is useful to apply
probabilistic reasoning to “smooth over the fuzzy parts” and simplify the underlying structure. The
Turing award laureate Judea Pearl championed this worldview in the AI community, but initially
had to fight for any sort of attention; he even created a new conference in which probabilistic AI
papers could be published.

Lecture series overview
The goal of this lecture series is to learn to build and reason about probabilistic programming
languages.
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Figure 1: World Representation

1. Lecture 1 (this lecture): Syntax and semantics of PPLs
2. Lecture 2: Sampling
3. Lecture 3: Tractability and expressivity
4. Lecture 4: Special topics

How does Probabilistic Programming make reasoning better?

• Networks of Plausible Inference - Judea Pearl [3]
• Ordinary logic is monotonic, and is insufficient for a changing world without modifications to

support modifying or deleting existing facts (e.g. to forget irrelevant facts).

Probabilistic programs: Programs that denote probability distributions.

An example PPL program:
// x and y would get tt with probability 1/2
x <- flip 1/2;
y <- flip 1/2;
return x ∨ y

Probability that return value is true is 3/4. [𝑡𝑡 ↦ 3/4, 𝑓𝑓 ↦ 1/4]
Given some finite sample space Ω: Ω = {tt, ff}
A probability distribution is a function Ω → [0, 1] such that

∑
𝜔∈Ω

Pr[𝜔] = 1

We use semantic brackets of this form: ⟦⋅⟧

Tiny PPL
Syntax

In these notes we follow the convention of using “tt” to denote the semantic truth value, and “true”
to denote the syntactic truth value.
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# Pure terms
p ::= true | false

| x
| if p then p else p
| p ∧ p
| p ∨ p

# Effectful or probabilistic terms
e := x <- e; e

| return p # Take a pure thing and make it impure
| flip 𝜃 # Introduce randomness , where 𝜃 is a probability ∈ ℝ

An example program:

x <- return true
return x

Semantics

We denote the semantics of pure terms with respect to environments containing variables.

J𝑝K ∶ 𝐸𝑛𝑣 → 𝐵𝑜𝑜𝑙

J𝑝K is a partial function. If 𝑝 references some variable which is not in the environment, the value ofJ𝑝K is undefined.

• J𝑥K𝑝(𝑥 ↦ 𝑡𝑡) = 𝑡𝑡
• J𝑡𝑟𝑢𝑒K𝑝(𝜌) = 𝑡𝑡, where 𝜌 is any env
• J𝑝1 ∧ 𝑝2K𝑝(𝜌) = J𝑝1K𝑝(𝜌) ∧ J𝑝2K𝑝(𝜌)

Semantics of probabilistic terms:

Given an environment and value, there is a probability associated with it.

J𝑒K ∶ Env → (Bool → [0, 1])

Jflip 𝑟K(𝜌) = {tt ↦ 𝑟, ff ↦ 1 − 𝑟}, 𝑟 ∈ [0, 1]

Jreturn 𝑝K(𝜌) = ∀𝑣 ∶ 𝑣 ↦ {1 if J𝑝K𝑝(𝜌) = 𝑣
0 otherwise

J𝑥 ← 𝑒1; 𝑒2K(𝜌)(𝑣) = ∑
𝑣′

J𝑒1K(𝜌)(𝑣) ∗ J𝑒2K(𝜌[𝑥 ↦ 𝑣′])(𝑣)

An example:
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J𝑥 ← flip 1/2K(𝜌)

Performing case analysis on 𝑥, being a pure term, we get:

J𝑥 ← flip 1/2; return 𝑥K(𝜌)(𝑣)
= Jflip 1/2K(𝜌)(tt) ∗ Jreturn 𝑥K(𝜌[𝑥 ↦ tt])(𝑣) + Jflip 1/2K(𝜌)(ff) ∗ Jreturn 𝑥K(𝜌[𝑥 ↦ ff])(𝑣)

How can we consider our events to be independent?

• We can because the only way to introduce randomness here is flip, which is independent.

The semantics of flip are defined monadically. Further reading on monadic probabilistic semantics
can be found in [1] and [4].

Complexity of the semantics
The semantics of TinyPPL, though quite simple, is in fact computationally intractible. As it
turns out, evaluating the probability distribution of a program is #P-hard; there is a relatively
straightforward Cook reduction from #SAT to TinyPPL’s semantics. (#SAT is the problem of
determining the number of satisfying assignments for a given Boolean formula.) By Toda’s theorem,
#P oracles can decide quantified Boolean formulas in PH, meaning that there is no known algorithm
which can compute the probability distribution of a TinyPPL program efficiently. In general,

#SAT(𝜙) = 2#𝑣𝑎𝑟𝑠 ∗ JprogramK(𝜙)(tt)

A full proof of this reduction is left as an exercise to the motivated reader.

Why do we care about complexity of denotational semantics, given that what the computer is
running will be operational semantics? The complexity of the denotational semantics tells us how
“good” we can be. We are forced to consider the computational price of adding new features such
as tuples, functions, heaps, and so forth. TinyPPL is almost nothing, and yet it is still quite
computationally inefficient; more features can only make things worse.

Examples of Systems in the Wild
• Stan from Columbia: https://mc-stan.org/

–

• Pyro

• Tensorflow Probability: https://www.tensorflow.org/probability

• R2 from Microsoft: https://www.microsoft.com/en-us/research/project/r2-a-probabilistic-
programming-system/

Can you elaborate on the difference between this and deep learning approaches?
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• This is a Bayesian learning model: Different style from deep learning
– An advantage of Probabilistic Programming is that it is very interpretable. This is more

difficult with Deep Learning.
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