
Tractability	and	Expressivity

Book	on	Measure	Theory:	"Measure,	Integration	and	Real
Analysis"	-	Sheldon	Axler

When	does	sampling	work	well	and	when	does	it	work	poorly?

We	look	at	it	in	the	context	of	an	example.

I	can	flip	two	coins:

The	tagline	is	that	direct	sampling	performs	poorly	for	low
probability	estimates.	You'll	encounter	the	same	problem	with	a
mostly	true	probability.

Question:	Isn't	this	okay,	as	its	true	that	the	probability	is	low?

Yes,	but	another	issue	lies	in	interactions	with	conditioning.

We'll	modify	the	program	to:

How	do	we	observe	sampling?

1.	Rejection	Sampling

Violation	of	the	observation	means	you	forget	that	sample
and	draw	another	one,	denoting	it	"bottom"

Afterwards,	only	consider	the	accepted	samples

In	the	program	we	have	above,	this	results	in	lots	of	samples
being	done.

Called	the	low	probability	of	evidence	problem.

We	have	a	worst	case	hardness	situation,	and	

Drawback	of	approximation	sampling	is	dealing	with
approximate	conditioning.

2.	Search

We	use	a	probabilistic	if,	which	should	be	easy	to	define.

Example	Program:

I	can	write	down	a	search	tree	through	this	program

Tree	above	could	have	been	drawn	more	cleverly,	re-using
duplicate	substructure.

This	transformed	graph	above	and	to	the	right	is	saving	us	some
effort.	It's	called	a	Binary	Decision	Diagram.

With	it,	we	can	answer	questions	about	probability	nicely.

How	do	we	build	this?

Going	from	the	larger	tree	to	the	smaller	seems	untenable.

Binary	Decision	Diagrams	(BDD):

"Only	fundamental	data	structure"	-	Donald	Knuth

What	do	I	mean	by	tractibility	and	expressivity?

The	language	is	expressive,	the	graph	is	restrictive.

Idea:	Use	a	more	tractable	language	as	an	"assembly	language"
for	your	probabilistic	programs.	The	tractable	language
programs	will	have	the	same	semantics.

Question:	What	if	we	were	ok	with	losing	semantics?

Good	paper	idea,	but	we're	going	to	talk	about	semantics
preserving	compilation

Knowledge	Compilation:	(Adnan	Darwiche)

His	observation	is	that	there's	a	relationship	between
hardness	of	propositional	reasoning	tasks	and	syntax	of
formulae.

This	makes	sense,	if	we	consider	for	instance	conversion	to
DNF	(Disjunctive	Normal	Form)	for	SAT.	

Example	DNF:

DNF	is	a	family	of	formulae	for	which	SAT	is	easy	to	solve.

Begs	the	question,	what	kinds	of	structure	enable	efficient
reasoning?

Paper:	"A	Knowledge	Compilation	Map",	2002,	Adnan	Darwiche.

discusses	Succintness

ore	efficient	to	translate	all	programs	in	L2	to	L1

Succintness

In	looking	back	at	the	tractibility	and	expressivity	graph,	we
say	that	TinyPPL	is	more	succint	than	BDD.

A	Related	Paper	in	PL:	"On	the	Expressive	Power	of
Programming	Languages",	Felleisen,	1991.		

Efficiency	is	polynomial	in	the	size	of	the	program

Question:	Do	we	consider	this	individually	or	for	all	possible
programs?

It's	a	for-all,	so,	all	possible	programs.

Follow-up:	How	can	we	know	BDD	is	not	more	succint	than
TinyPPL

Assume	that	a	translation	from	BDD	to	TinyPPL	exists,
therefore,	we	can	compute	a	translation	in	polynomial
time.	This	produces	a	contradiction

Question:	Do	we	consider	the	size	of	the	program?

This	is	also	polynomial	in	space,	because	the	space	is
restricted	by	the	runtime	complexity.

Question:	Do	you	have	an	example	of	a	very	intractable
language?

Table	language	where	each	row	is	a	possible	world.

Could	end	up	with	a	very	large	table.

Compiling	TinyPPL	to	BDD

Paper:	Holtzen	et	al,	OOPSLA,	2020

We	want	a	compositional	compilation.

In	these	diagrams	boxes	are	PPL	programs,	Triangles	are	BDDs.

BDDs	have	natural	compositionality.

I'm	going	to	show	a	simple	inductive	procedure

Starting	with	A,	conjoin	the	true	child	and	the	false	child
together.

Structural	Invariants	of	BDDs:

1.	Ordering	of	variables	is	the	same	on	all	paths.

2.	Reduction:	

		1.)	No	isomorphic	subtrees	(syntactically,	no	redundant
subterms)

		2.)	No	Vacuous	children/nodes.	This	is	implied	by	1st	part	of
reduction.

Above	structural	invariants	imply	Canonicity

Now	lets	look	at	the	other	inductive	case,	where	the	top
variables	are	not	equal.

Question:	What	happens	if	we	add	observe?

Won't	discuss	the	full	compilation.

Trick	is	that	you'll	have	two	bdds,	one	representing	prob	of
accepting,	one	unnormalized	semantics.

Could	use	ZDDs

Question:	On	what	occurs	when	its	a	graph	with	two	nodes
pointing	to	the	same	false.

The	tree	restriction	is	helpful	here.	Each	node	needs	a	true
branch	and	a	false	branch.

For	next	time:	

We	take	pieces	of	a	tinyPPL	program,	compile	them	to	BDDs,
and	then	compose	them.

Benefit:	There	are	really	high	performance	BDD	libraries,	similar
to	the	situation	with	SAT	Solvers.

Variety	of	approaches	to	compilation

Ours	was	bottom	up	compilation.

Question:	Do	we	get	a	nicer	theory	from	BDDs?

Yea,	BDDs	have	affine	logic,	sharing	of	subterms.

Theory	of	BDDs	tells	you	something	about	your	inference
cost

There	is	some		theory	argument	that	could	be	made	there.

We'll	do	a	small	part	of	the	program	we	showed	earlier

Compilation	Arrow:

Code	has	an	implementation	of	this	arrow

Define	this	relationship	inductively,	starting	with	base	case

Now	we	do	bind:

Applied	to	our	example:

This	is	a	really	effective	way	to	do	probabilistic	inference.	Code
has	examples	of	how	to	do	this.

Question:	What	causes	the	complications	that	might	make	a
large	and	inefficient	program?

Arbitrary	boolean	expressions	in	the	return	p,p	case

Knuth's	"Art	of	Computer	Programming"	has	a	lot	of	pages	on
BDDs

Question:	Does	the	order	of	variables	actually	matter?

It	is	a	requirement	to	make	progress	in	the	inductive	step

Question:	Are	there	heuristics	for	picking	good	variable
orderings?

Books	of	them.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-

•

•

•

•

•

•

•

•

•

•

•

•

•

•


