Tractability and Expressivity

Book on Measure Theory: "Measure, Integration and Real
Analysis" - Sheldon Axler

When does sampling work well and when does it work poorly?
We look at it in the context of an example.
| can flip two coins:

swtlea

X <« F':r ©.00000| FEFFE..
¥ I 9
\b(— Fl‘r 0.00000|

teturn XN \3

The tagline is that direct sampling performs poorly for low
probability estimates. You'll encounter the same problem with a
mostly true probability.

Question: Isn't this okay, as its true that the probability is low?
* Yes, but another issue lies in interactions with conditioning.

» We'll modify the program to:
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How do we observe sampling?

1. Rejection Sampling

*» Violation of the observation means you forget that sample
and draw another one, denoting it "bottom"

» Afterwards, only consider the accepted samples

+ In the program we have above, this results in lots of samples
being done.

» Called the low probability of evidence problem.
* We have a worst case hardness situation, and

» Drawback of approximation sampling is dealing with
approximate conditioning.

2. Search

We use a probabilistic if, which should be easy to define.
Example Program:
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| can write down a search tree through this program
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Tree above could have been drawn more cleverly, re-using
duplicate substructure,
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This transformed graph above and to the right is saving us some
effort. It's called a Binary Decision Diagram.

+ With it, we can answer questions about probability nicely.
» How do we build this?

» Going from the larger tree to the smaller seems untenable.

Binary Decision Diagrams (BDD):
* "Only fundamental data structure” - Donald Knuth
What do | mean by tractibility and expressivity?

The language is expressive, the graph is restrictive.
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Idea: Use a more tractable language as an "assembly language”
for your probabilistic programs. The tractable language
programs will have the same semantics.

Question: What if we were ok with losing semantics?

» Good paper idea, but we're going to talk about semantics
preserving compilation

Knowledge Compilation: (Adnan Darwiche)

» His observation is that there's a relationship between
hardness of propositional reasoning tasks and syntax of
formulae.

* This makes sense, if we consider for instance conversion to
DNF (Disjunctive Normal Form) for SAT.

. Example DNF: (A AB) VIAACAT)V ...
* DNF is a family of formulae for which SAT is easy to solve.

Begs the question, what kinds of structure enable efficient
reasoning?

Paper: "A Knowledge Compilation Map", 2002, Adnan Darwiche.
s discusses Succintness
ore efficient to translate all programs in L2 to L1

Succintness
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* In looking back at the tractibility and expressivity graph, we
say that TinyPPL is more succint than BDD.

» A Related Paper in PL: "On the Expressive Power of
Programming Languages"”, Felleisen, 1991.

+ Efficiency is polynomial in the size of the program

Question: Do we consider this individually or for all possible
programs?

» It's a for-all, so, all possible programs.

» Follow-up: How can we know BDD is not more succint than
TinyPPL

- Assume that a translation from BDD to TinyPPL exists,
therefore, we can compute a translation in polynomial
time. This produces a contradiction
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Question: Do we consider the size of the program?

» This is also polynomial in space, because the space is
restricted by the runtime complexity.

Question: Do you have an example of a very intractable
language?

» Table language where each row is a possible world.

» Could end up with a very large table.

Compiling TinyPPL to BDD
Paper: Holtzen et al, OOPSLA, 2020

We want a compositional compilation.

In these diagrams boxes are PPL programs, Triangles are BDDs.

I'm going to show a simple inductive procedure

Starting with A, conjoin the true child and the false child
together.
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Structural Invariants of BDDs:
1. Ordering of variables is the same on all paths.
2. Reduction:

1.) No isomorphic subtrees (syntactically, no redundant
subterms)

2.) No Vacuous children/nodes. This is implied by 1st part of
reduction.
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Above structural invariants imply Canonicity
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Now lets look at the other inductive case, where the top
variables are not equal.
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Question: What happens if we add observe?
» Won't discuss the full compilation.

» Trick is that you'll have two bdds, one representing prob of
accepting, one unnormalized semantics.

» Could use ZDDs

Question: On what occurs when its a graph with two nodes
pointing to the same false.

* The tree restriction is helpful here. Each node needs a true
branch and a false branch.

For next time:

We take pieces of a tinyPPL program, compile them to BDDs,
and then compose them.

Benefit: There are really high performance BDD libraries, similar
to the situation with SAT Solvers.

Variety of approaches to compilation
Ours was bottom up compilation.
Question: Do we get a nicer theory from BDDs?
* Yea, BDDs have affine logic, sharing of subterms.

» Theory of BDDs tells you something about your inference
cost

* There is some theory argument that could be made there.

We'll do a small part of the program we showed earlier
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Code has an implementation of this arrow

Define this relationship inductively, starting with base case

FI
\
9['\,.}—9
y
T F

> Fl
o6/ e
T F

R @ p> [ wolpeo

Now we do bind:
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Applied to our example:
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This is a really effective way to do probabilistic inference. Code
has examples of how to do this.

Question: What causes the complications that might make a
large and inefficient program?

» Arbitrary boolean expressions in the return p,p case

» Knuth's "Art of Computer Programming” has a lot of pages on
BDDs

Question: Does the order of variables actually matter?
* Itis a requirement to make progress in the inductive step

Question: Are there heuristics for picking good variable
orderings?

* Books of them.



