
The Real/Ideal Paradigm

How to Enforce Security

� Cryptography

– Randomness

– Intractable math problems (Quantum may unwind this...)

– Unpredictable complexity (e.g., Hashing)

* For hashing, if you can find a collision, it’s all over!

* Not hard in a complexity theory sense, but we can always inno-
vate when one breaks.

� PL Security

– Unforgeable references to heap objects

– Data abstraction

– Dynamic control flow

� Resource Managers

– An OS or something that holds/manages resources

– Referred per-client resource descriptors

How to Define Security

� Employ the Real/Ideal paradigm from Cryptography

� Security means that the Adversary can’t tell Real and Ideal systems apart
based on inputs/outputs.

– In the Ideal side, M is embedded in a simulator and can’t tell that
the system is not actually doing the thing happening in the Real side,
where nothing is being simulated.

– What damage could M do by relating info from the honest parties
to the actual functionality?

– Can you run these side by side and compare? No.

1



* Instead, the adversary runs a test on the system, and then re-
turns a judgement. We agree it is secure if the probability that
the Adversary returns some probability close to the actual prob-
ability.

* Adversary can experiment individually with one of the worlds,
does not get to run them in parallel. Adversary returns T if
Real and F if Ideal. Our goal is to make that very hard for the
Adversary.

* If the Adversary cannot tell the worlds apart, then we have se-
curity in the Real world because the Ideal world has it by con-
struction. If the Adversary can’t tell Real apart from Ideal, then
the same security from Ideal must apply to Real.

The EasyCrypt Proof Assistant

� For reasoning about probabilistic imperative programs, including ones in-
volving black-box code.

� Four program logics:

– Hoare (partial correctness), Prob Hoare (pHL) (Prob procedures ter-
minate with events holding), Prob relational Hoare (pRHL) (Rela-
tional reasoning), Ambient Logic (classical higher-order, not depen-
dently typed).

� Proofs with Lemmas using tactics similar to Coq (especially SSReflect).

Cryptographic Security

� Protocols can be specified in EasyCrypt

– We have to implement the randomness they use. We won’t do that
in these lectures.

– There’s work on formally connecting EasyCrypt code to low-level
implementations of these protocols.

� Example: Symmetric Encryption

– We will...

* Define symmetric encryption.

* Specify security for the scheme using security of PRF.

* Prove security via reduction to PRF.

– Do a form of R/I without simulator, but the top-level security theo-
rem will appear to use an indistinguishability game. But R/I under-
pins it!

2



– Treatment is parameterized by 3 types:

* type key. (encryption keys)

* type text. (plaintexts)

* type cypher. (cyphertext, scheme specific)

– Scheme is a stateless implementation of a module with a standard
interface.

* proc key gen() : key

* proc enc(k: key, x: text)

* proc dec(k: key, c: cipher)

– Scheme is correct iff running main with arbitrary x returns x with
Pr[1]. Example on the slides.

An Encryption Oracle Game (IND-CPA Secu-
rity)

� 4 Procedures, generates a key it stores inside itself (init), then 3 ways of
encrypting a plaintext to get a ciphertext. One for the Choose part of the
game (encpre), one for the game (enc, generates the ciphertext to decode),
and one for the adversary to use (encpost, used in Guess).

� Adversary gets access to the oracle. It can Choose and Guess:

– Choose returns a pair of plaintexts, can call the encpre procedure,
and can call it as much as it likes. But, encpre, after some parameter
of calls, starts doing nothing interesting. So the security is dependent
on the limit to the number of calls that return something meaningful.

– Guess = gets a ciphertext, and must choose which of the plaintexts
the ciphertext encrypted. Can call encpost as much as it likes, but the
defined limit makes it stop returning useful info after some number
of calls. Uses the actual key that the game used for its encryption.

� Goal is to prove that the adversary doesn’t win more than half the time, or
only a tiny bit more than half the time (negligibly more). This is only pos-
sible when encryption is probabilistic. Decryption has to be deterministic,
of course.

� Can also represent it as the probability that the Adversary loses. Can
bound distance between probability that the adversary wins to 1/2. If
framed in terms of losses instead, you can just reverse the protocol and
get the winning percentage anyway.

3



Pseudorandom Functions

� Our PRF is an operator F with type key → text → text.

� Details will be on slides.

� Random function module is a module with init and f (transforms text to
text).

� It uses our PRF F to make a random function...? I’m not really sure how
that works!

� Game here is for the Adversary to determine whether they are interacting
with a PRF vs. a truly Random function.

� We need to limit the Adversary (RFA = Random Function Adversary)
somehow, because otherwise it could build a map of inputs to outputs in
exponential time. This would distinguish between Random and PRF for
sure.

Correctness

� Can prove that the enc’d value always comes out to the right dec’d value
value.

� One on the slides uses the XOR thing.

Next Time

� We will pick up from here with some review.

� If we have an Adversarial strategy of our scheme, what does that say about
our security theorem?

� If I were an Adversary, how would I make progress in breaking this scheme?

� Give a high-level sketch of our security theorem.

Misc

� <$ is syntax for variable assignment w/ flip.

– y <$(distribution over type of variable y)

– Pick a value from this distribution and assign it to y.

� $ is used because of a parsing issue. They had to disambiguate certain
things. So they use <- for regular assignment, and <$ for probabilistic
assignment. <@ is for assigning the result of a procedure call to a variable.

4


