Formal Verification of Monadic Computations

Steve Zdancewic

June 2024

1 Interaction Trees : A Coinductive Version of
the Freer Monad

Computation can either return a value of type R, perform a internal step of
computation, or tirgger an external event e expecting a certain answer of type
X. In this final case, we must continue with a continuation that takes in things
of type X.

1.1 How are ITrees executable?

They are just coinductive data structres. Meaning that they are lazily evaluated,
and we can unfold one layer by forcing the tree. An interpreter is then something
that steps through the tree by iteratively peeling back one lazy constructor

Note: That these being “executable” means that we can extract it to an
OCaml program

2 First Examples of I'Tree Computations

We can choose what sorts of events we wish to include, as a first pass lets include
10 events

2.1 Silent Divergence

We can forever take 7 steps, and thus never emit an event. This program has no
observable behavior, and is thus in the bottom of a lattice of programs ordered
by their observable behavior

2.2 Failure

We can model failure by having nodes that expect continuations that expect
terms of the empty type



2.3 Sequential Composition

Find all leaves of a tree and replace return nodes in a tree with continutation that
return new trees. Stitch together existing continuation leaves by composition
with the incoming continuations.

This sequential composition provides the bind for the monad structure on
ITrees.

3 Factorial via ITrees

Steve’s notes show how to encode iterative programs, and I won’t go into re-
gurgitating all of that. However, I think that it is important to reflect on how
these programs work. The structure of the ITrees allows coinductive reasoning
of potentially non-terminating programs. Even though that the programs he is
writing happen to terminate, that is not a given.

4 Intepretations

Interpretations (or interpreters) are just monadic folds over the ITree.

5 Denotational Semantics for Imp

Represent the read and write interactions of Imp as read and write events. We
are weriting a very similar interpreter as we did yesterday, with an approach
like in datatype a la carte, but now where we output ITrees.

I wish I had more to say here but its hard to write anything
without just echoing his slides

6 Bisimulation

Can call two ITrees equivalent, strongly bisimilar, if they are syntactically equal,
node-for-node, when unrolled.

We may also introduce a notion of equivalence for weak bisimilarity, where
we talk about equality up to ignoring 7 nodes. To be more precise, in Steve’s
words, “ignoring inductively many 7’s”. That is, we can ignore finitely many 7
nodes, but we cannot delete or impute infinitely many 7’s to the point where
you affect the divergence of a path through the tree.

Both weak and strong bisimulation respect the monad laws. However, iter-

ation is better behaved with respect to weak bisimilarity.



7 Equivalence for Imp Programs

We have syntactically written Imp programs, and we represent them as I'Trees.
We can think of this as a very weak sense of compilation down to ITrees. This
gives a stack of progressively lower level representations. Moreover, this com-
pilation is sound in the sense that equivalence of higher level representations
implies equivalence of their lower level analogues.

We can prove the soundness of syntactically rewriting rules — justified by
proving a lemma of having the same interpretation into I'Trees — and then we
can write proof search tactics that automatically apply these rewriting rules.

Similarly, you can build optimizing program transformations and then prove
them correct via the tactics.



