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These are the lecture notes for Frank Pfenning’s course at OPLSS 2024.

1 LECTURE 1: LINEAR FUNCTIONAL PROGRAMMING
Linear logic: 1987 or earlier. Relevance has been known for a while, but implementation takes a
while. But see, eg, Rust: things are changing.

1.1 SNAX
In this course, we use the SNAX programming language (its name derives from proof theory). It
has the following features:
• Substructural programming (linear + non-linear)
• Inference
• Overloading (between linear/non-linear versions)
• Intermediate language also based in proof theory: it is a proof-theoretic compiler
• pretty decent performance comparable to MLTon

1.2 Types

() : 1

e : A
inl e : A + B

e : B
inr e : A + B

() value

v value

inl v value

v value

inr v value
And we define
2 = 1 + 1
true = inl ()
false = inr ()

1.2.1 Sum Types. But in fact, we’ll use labels: +{l : Al} for L ≠ ∅, finite (L has to be non-empty
due to implementation issues).
A + B = +{inl : A, inr : B}

bool = +{true : 1, false : 1}
true () : bool
false () : bool

1.2.2 Equireqursive Types. We can form the natural numbers using an equirecursive (not isorecur-
sive) approach.
nat = +{zero : 1, succ : nat}
⌈0⌉ = zero ()
⌈1⌉ = succ (zero ())
⌈2⌉ = succ (succ (zero ()))
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(K ∈ L) e : Al

K(e) : + { l : Al }l ∈L
v value

K(v) value

list = +{ nil : 1, cons : nat × list }

1.2.3 Pairs.

e1 : A e2 : B
(e1, e2) : A × B

v1 value v2 value

(v1, v2) value
1.2.4 Computation. Barely, we are not introducing function types.

not (x : bool)
not x = match x with

| true a => false a
| false a => true a

Note: It would not be legal to use () instead of a on the right-hand side! That would not be linear .

1.2.5 Match construct.

e : + { l : Al }l ∈L x : Al ⊢ el : C (∀l ∈ L)
match e with (l(x) ⇒ el)l ∈L : C

For pairs, we need to use a different approach to avoid re-using variables:

Γ ⊢ e1 : A Δ ⊢ e2 : B
Γ,Δ ⊢ (e1, e2) : A × B x : A ⊢ x : A

We can only apply this rule if x is the only variable in the context. Otherwise, there could be unused
variables.

Note: variables must be unique in a context.

Δ ⊢ e : A × B Γ, x : A, y : B ⊢ e′ : C
Δ, Γ ⊢ match e with (x, y) ⇒ e′ : C

How to implement? The obvious solution is to just check the preconditions and make sure that
they partition the variables. However, this does not perform well. Better approaches will be covered
in the next lecture.

Back to the type rules for other types:

⊢ () : 1
We need to use the empty context, since this term consumes no variables.

Δ ⊢ e : + { l : Al }l ∈L Γ, x : Al ⊢ el : C (∀l ∈ L)
Δ, Γ ⊢ match e with (l(x) ⇒ el)l ∈L : C

Note that every branch of the match must have the same context Γ. This is just to say that every
branch must use the same set of variables.

plus (x : nat) (y : nat) : nat
plus x y = match x with

| zero () => y
| succ x’ => succ (plus x’ y)
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Note that in the first arm, a pattern like zero u would not work, since u would be unused.
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